
1

Data Stream Management Systems
- for Sensor Networks –

Vera Goebel
Department of Informatics, University of Oslo

• New Computing Paradigm?

• Sensor Networks

• What are DSMSs? (terms)

• Why do we need DSMSs? (applications)

• Concepts: Data Model, Query Processing, Windows

• Application Example: Medical Data Analysis with Esper

Historical Perspective of

Computing

2

Mainframes

Personal

Computers

Internet &

Mobile Computing

What is the common

denominator?

Today‟s Computing Paradigm

3

Computing

Device

Input Output

Device centric I/O

Human interaction, respectively human in the loop

Building Blocks for the Next Step …

• Sensors

• Actuators

• Today very successful in specialized systems

4

Future Networked Computing

5

Internet

Networked computing

devices, human interaction

S

S

A

A

Networked computing,

sensing, actuation, potentially

without human interaction

From Human Computer Interaction (HCI)

to Computer Environment Interaction (CEI)

Many Application Domains

6

[T. Bohnert, SAP, June 2010]

Sensors and Actuators …
… seen from a system integrations point of view

7

A/D or D/A

conversion

Processing &

communication

A/D or D/A

conversion

Processing &

communication

A/D or D/A

conversion

Processing &

communication

Application 1 Application 2 Application n

Communication

Signal

Processing

Data

Aggregation

Storage &

retrieval

Complex Event

Processing

Security &

privacy

Some core

services

Some Sensornet Applications

Redwood forest

microclimate monitoring

Smart cooling in data centers

http://www.hpl.hp.com/research/dca/smart_cooling/

ZebraNet

9

Sensor Hardware

Motes:

ZebraNet II:

10

Principles of Sensor Networks

• A large number of low-cost, low-power,
multifunctional, and small sensor nodes

• Sensor node consists of sensing, data
processing, and communicating components

• A sensor network is composed of a large
number of sensor nodes,
– which are densely deployed either inside the

phenomenon or very close to it.

• The position of sensor nodes need not be
engineered or pre-determined.
– sensor network protocols and algorithms must

possess self-organizing capabilities.

11

Sensor Hardware
• A sensor node is made up of four basic components

– a sensing unit

• usually composed of two subunits: sensors and analog to digital
converters (ADCs).

– processing unit,

• Manages the procedures that make the sensor node collaborate with
the other nodes to carry out the assigned sensing tasks.

– A transceiver unit

• Connects the node to the network.

– Power units (the most important unit)

• Matchbox-sized module
– consume extremely low power,

– operate in high volumetric densities,

– have low production cost and be dispensable,

– be autonomous and operate unattended,

– be adaptive to the environment.

But we can better at Ifi

12

GlucoSense project:

- Philipp Häfliger (NANO) and other external partners:

-Implanted sensor to measure blood sugar -> must be VERY small

-How to change the batteries?

-How to communicate?

13

Classical sensor networks architecture

The sensor nodes are usually scattered in a sensor field
Each of these scattered sensor nodes has the
capabilities to collect data and route data back to the
sink

The sink may communicate
with the task manager node
via Internet or Satellite.

Sensor networks - issues

• Wireless sensors:

– Small to ultra-small

– Energy is very important

• Smart-phones

– Everybody has one

– Energy less important

– Privacy

• Wired sensors

– Surveillance cameras etc.

– Energy is no problem

– How to model multimedia data streams?
14

Opportunistic sensor networks

• What if we have networking problems?

– Sensor nodes in sleep to save power

– Mobility

– Obstacles

– +++

• Let‟s see what the Future Internet should

provide

15

16

Handle Data Streams in DBS?

Traditional DBS DSMS

Query Processing

Register CQs Result
(stored)

Query Processing

Main MemoryData Stream(s) Data Stream(s)

SQL Query Result

Disk

Main Memory

Archive

Stored relations

Scratch store
(main memory or disk)

17

Data Management:
Comparison - DBS versus DSMS
Database Systems (DBS)

• Persistent relations

(relatively static, stored)

• One-time queries

• Random access

• “Unbounded” disk store

• Only current state matters

• No real-time services

• Relatively low update rate

• Data at any granularity

• Assume precise data

• Access plan determined by query

processor, physical DB design

DSMS

• Transient streams

(on-line analysis)

• Continuous queries (CQs)

• Sequential access

• Bounded main memory

• Historical data is important

• Real-time requirements

• Possibly multi-GB arrival rate

• Data at fine granularity

• Data stale/imprecise

• Unpredictable/variable data arrival and

characteristics

Adapted from [Motawani: PODS tutorial]

18

DSMS Applications

• Sensor Networks:
– Monitoring of sensor data from many sources, complex filtering,

activation of alarms, aggregation and joins over single or multiple
streams

• Network Traffic Analysis:
– Analyzing Internet traffic in near real-time to compute traffic

statistics and detect critical conditions

• Financial Tickers:
– On-line analysis of stock prices, discover correlations, identify

trends

• On-line auctions

• Transaction Log Analysis, e.g., Web, telephone calls, …

19

Motivation for DSMS

• Large amounts of interesting data:

– deploy transactional data observation points, e.g.,

• AT&T long-distance: ~300M call tuples/day

• AT&T IP backbone: ~10B IP flows/day

– generate automated, highly detailed measurements

• NOAA: satellite-based measurement of earth geodetics

• Sensor networks: huge number of measurement points

• Near real-time queries/analyses

– ISPs: controlling the service level

– NOAA: tornado detection using

weather radar data

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

20

Motivation for DSMS (cont.)

• Performance of disks:

1987 2004 Increase

CPU Performance 1 MIPS 2,000,000 MIPS 2,000,000 x

Memory Size 16 Kbytes 32 Gbytes 2,000,000 x

Memory Performance 100 usec 2 nsec 50,000 x

Disc Drive Capacity 20 Mbytes 300 Gbytes 15,000 x

Disc Drive Performance 60 msec 5.3 msec 11 x

Source: Seagate Technology Paper: ” Economies of Capacity and Speed: Choosing the most

cost-effective disc drive size and RPM to meet IT requirements”

21

Motivation for DSMS (cont.)

• Take-away points:

– Large amounts of raw data

– Analysis needed as fast as possible

– Data feed problem

22

Application Requirements

• Data model and query semantics: order- and time-based operations
– Selection

– Nested aggregation

– Multiplexing and demultiplexing

– Frequent item queries

– Joins

– Windowed queries

• Query processing:
– Streaming query plans must use non-blocking operators

– Only single-pass algorithms over data streams

• Data reduction: approximate summary structures
– Synopses, digests => no exact answers

• Real-time reactions for monitoring applications => active mechanisms

• Long-running queries: variable system conditions

• Scalability: shared execution of many continuous queries, monitoring multiple
streams

• Stream Mining

23

Generic DSMS Architecture

Input

Monitor

Output

Buffer

Q
u

e
ry

 P
ro

c
e
s
s
o
r

Query

Reposi-

tory

Working

Storage

Summary

Storage

Static

Storage
Streaming

Inputs

Streaming

Outputs

Updates to

Static Data

User

Queries

[Golab & Özsu 2003]

24

DSMS: 3-Level Architecture

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

DBS

• Data feeds to database can also be

treated as data streams

• Resource (memory, disk, per-tuple

computation) rich

• Useful to audit query results of DSMS

• Supports sophisticated query

processing, analyses

DSMS

• DSMS at multiple observation points,

(voluminous) streams-in, (data reduced)

streams-out

• Resource (memory, per tuple computation)

limited, esp. at low-level

• Reasonably complex, near real-time, query

processing

• Identify what data to populate in DB

25

Data Models

• Real-time data stream: sequence of data items that
arrive in some order and may be seen only once.

• Stream items: like relational tuples
- relation-based models, e.g., STREAM, TelegraphCQ; or

instanciations of objects

- object-based models, e.g., COUGAR, Tribeca

• Window models:
– Direction of movement of the endpoints: fixed window, sliding

window, landmark window

– Physical / time-based windows versus logical / count-based
windows

– Update interval: eager (update for each new arriving tuple)
versus lazy (batch processing -> jumping window), non-
overlapping tumbling windows

26

Timestamps

• Explicit
– Injected by data source

– Models real-world event represented by tuple

– Tuples may be out-of-order, but if near-ordered can reorder with
small buffers

• Implicit
– Introduced as special field by DSMS

– Arrival time in system

– Enables order-based querying and sliding windows

• Issues
– Distributed streams?

– Composite tuples created by DSMS?

27

Queries - I
• DBS: one-time (transient) queries

• DSMS: continuous (persistent) queries
– Support persistent and transient queries

– Predefined and ad hoc queries (CQs)

– Examples (persistent CQs):
• Tapestry: content-based email, news filtering

• OpenCQ, NiagaraCQ: monitor web sites

• Chronicle: incremental view maintenance

• Unbounded memory requirements

• Blocking operators: window techniques

• Queries referencing past data

28

Queries - II

• DBS: (mostly) exact query answer

• DSMS: (mostly) approximate query answer

– Approximate query answers have been studied:

• Synopsis construction: histograms, sampling, sketches

• Approximating query answers: using synopsis structures

• Approximate joins: using windows to limit scope

• Approximate aggregates: using synopsis structures

• Batch processing

• Data reduction: sampling, synopses, sketches,

wavelets, histograms, …

29

One-pass Query Evaluation

• DBS:

– Arbitrary data access

– One/few pass algorithms have been studied:

• Limited memory selection/sorting: n-pass quantiles

• Tertiary memory databases: reordering execution

• Complex aggregates: bounding number of passes

• DSMS:

– Per-element processing: single pass to reduce drops

– Block processing: multiple passes to optimize I/O cost

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

30

Query Languages

3 querying paradigms for streaming data:

1. Relation-based: SQL-like syntax and enhanced support

for windows and ordering, e.g., Esper, CQL (STREAM),

StreaQuel (TelegraphCQ), AQuery, GigaScope

2. Object-based: object-oriented stream modeling, classify

stream elements according to type hierarchy, e.g.,

Tribeca, or model the sources as ADTs, e.g., COUGAR

3. Procedural: users specify the data flow, e.g., Aurora,

users construct query plans via a graphical interface

(1) and (2) are declarative query languages,

currently, the relation-based paradigm is mostly used.

31

Approximate Query Answering Methods

• Sliding windows
– Only over sliding windows of recent stream data

– Approximation but often more desirable in applications

• Batched processing, sampling and synopses
– Batched if update is fast but computing is slow

• Compute periodically, not very timely

– Sampling if update is slow but computing is fast
• Compute using sample data, but not good for joins, etc.

– Synopsis data structures
• Maintain a small synopsis or sketch of data

• Good for querying historical data

• Blocking operators, e.g., sorting, avg, min, etc.
– Blocking if unable to produce the first output until seeing

the entire input

[Han 2004]

32

Application Examples

Traditional monitoring
apparatus.

Earthquake monitoring in
shake-test sites.Vehicle detection: sensors along a

road, collect data about passing
vehicles.

Habitat Monitoring:
Storm petrels on
Great Duck Island,
microclimates on
James Reserve.

33

Sensor Networks

Base station
(gateway)

Motes (sensors)

34

Sensor Network Characteristics

• Autonomous nodes
– Small, low-cost, low-power, multifunctional

– Sensing, data processing, and communicating
components

• Sensor network is composed of large number of
sensor nodes
– Proximity to physical phenomena

• Deployed inside the phenomenon or very close to it

• Monitoring and collecting physical data

• No human interaction for weeks or months at a
time
– Long-term, low-power nature

35

Sensor Hardware
• A sensor node is made up of four basic components

– Sensing unit

• usually composed of two subunits: sensors and analog to digital
converters (ADCs).

– Processing unit,

• Manages the procedures that make the sensor node collaborate with
the other nodes to carry out the assigned sensing tasks.

– Transceiver unit

• Connects the node to the network.

– Power units (the most important unit)

• Matchbox-sized module
– consume extremely low power,

– operate in high volumetric densities,

– have low production cost and be dispensable,

– be autonomous and operate unattended,

– be adaptive to the environment.

36

Principles of Sensor Networks

• A large number of low-cost, low-power,
multifunctional, and small sensor nodes

• Sensor node consists of sensing, data
processing, and communicating components

• A sensor network is composed of a large
number of sensor nodes,
– which are densely deployed either inside the

phenomenon or very close to it.

• The position of sensor nodes need not be
engineered or pre-determined.
– sensor network protocols and algorithms must

possess self-organizing capabilities.

37

Managing Data

• Purpose of sensor network:
Obtain real-world data
– Extract and combine data from the network

• But: Programming sensor networks is hard!
– Months of lifetime required from small batteries

– Lossy, low-bandwidth, short range communication

– Highly distributed environment

– Application development

– Application deployment administration

38

Data Management Systems

for Sensor Networks

• Motivation:

– Implement data

access

• Sensor tasking

• Data processing

• Possibly support for

data model and query

language

• Goals:

– Adaptive

• Network conditions

• Varying/unplanned

stimuli

– Energy efficient

• In-network processing

• Flexible tasking

• Duty cycling

39

DSMS for Sensor Networks

• Aurora & Medusa System
– Aurora: single-site high performance stream processing engine

– Aurora*: connecting multiple Aurora workflows in a distributed

environment

– Medusa: distributed environment where hosts belong to different

organizations and no common QoS notion is feasable

• TinyDB
– Developed as public-domain system at UC Berkeley

– Widely used by research groups as well as industry pilot projects

– Successful deployments in Intel Berkeley Lab and redwood trees

at UC Botanical Garden

40

Health Care Applications

• Integrated patient monitoring

• Telemonitoring of human physiological

data

• Tracking and monitoring doctors and

patients inside a hospital

• Tracking and monitoring patients and

rescue personnel during rescue operations

Online Analysis of Myocardial

Ischemia From Medical Sensor Data

Streams with Esper

Stig Støa1, Morten Lindeberg2, Vera Goebel2

1 The Interventional Centre (IVS), Rikshospitalet University Hospital, Oslo, Norway
2 Distributed Multimedia Systems, Department of Informatics, University of Oslo, Norway

Adaptive Sized Windows To Improve Real-Time Health

Monitoring – A Case Study on Heart Attack Prediction

• Application: Real-time health monitoring.

• Problem: Data stream management systems (DSMSs) mainly support

the processing of data stream windows of static size. Should adapt to the

physiological processes of the human body, e.g., the cardiac cycle, which

has variable durations.

• Goal: Adapt the processing of data streams to physiological processes,

such as heartbeats, using time-based sliding windows of adaptive “size.”

• Published work in biomedical symposium:

Stig Støa, Morten Lindeberg, Vera Goebel: Online Analysis of Myocardial

Ischemia from Medical Sensor Data Streams with Esper, Proceedings of the

First International Symposium on Applied Sciences in Biomedical and

Communication Technologies (ISABEL 2008), October 2008

Idea

• Let external events (tuple results from external query) determine the

window size of a sliding window

• ECG stream to detect heartbeats (QRS detection)

• Accelerometer stream to detect heart displacement (Ischemia detection)

• Output of QRS detection (delay) determines when to trigger the flushing

of the sliding window in Ischemia detection query

• „Delay‟ is used to slow down accelerometer stream to account for QRS

detection delay in the FIFO queue

43

Experiment Goal #1

• Recreate off-line technique (Elle et al. 2005) conducted in MATLAB

• Early recognition of regional cardiac ischemia

• 3-way accelerometer placed on left ventricle of the heart

• Single metric:
– Fast Fourier Transformation (FFT) is used to examine the

accelerometer signal in the frequency-domain

– Euclidian distance vector (EDV(i)) between reference vector RV(0) and
current vector CV(j), where j is the latest sample number

– CV(j) : FFT over sliding window (size 512 over y-axis)

– RV(0) : FFT over baseline window (first 512 samples)

• Data set from surgery performed on pigs at the Interventional Centre

• We can conduct experiments with the same data set (data set 1)

44

Experiment Goal #2

45

• Improve results by adding beat-to-beat

detection using a QRS detection algorithm

on ECG signals

– Each ECG trace of a normal heartbeat typically

contains a QRS event

– A good reference for separating heartbeats

• We need to perform FFT over sliding

windows of variable size!

• Cannot use the same data, use new data

set that include ECG (data set 2)

[image from http://www.wikipedia.org

]

http://www.wikipedia.org

Challenges

1. Incorporate signal processing operations
– Problem: Not supported in the query language

– Fast Fourier Transformation of the accelerometer signals

– Euclidian distance vector from baseline window

– QRS detection for detecting the heartbeats from the ECG signals

– Solution: Custom aggregate functions

2. Static sized windows are not feasible for beat-to-beat detection
– Problem: Heartbeat duration is not a static pre-known size. DSMS

window techniques only describe static time-based or tuple-based
windows.

– Solution: Introduce variable length triggered tumbling windows

3. Synchronize the two streams
– Problem: QRS detection introduces variable delay (approx. 91 samples)

– Solution: Introduce variable buffer, that “slows” down the accelerometer
stream

46

Signal processing operations

• Implement as custom aggregate functions

• Use defined Java interface and simply add

to query engine

• Implemented methods:

– QRSD(v): QRS detection based on algorithm

from Hamilton et al. 1986, source code is

public available

– edv(v): Euclidian distance from baseline

47

Variable length triggered tumbling

windows

• The ECG stream is aggregated into a stream consisting of

QRS events Sb.

• This stream (Sb) triggers the flushing of the sliding window

w(t) where the custom aggregation over the stream Sa is

performed.

• This window technique is not supported by Esper => We

implemented a “workaround” exploiting functionality of

externally timed windows .

48

Stream Synchronization

• The QRS detection algorithm over the ECG stream introduces
a variable delay Δt.

• Introduce the same delay to the accelerometer stream.

• Accelerometer stream is sent through a FIFO queue with
dynamic size.

• QRS detection function sets the dynamic size of the FIFO
queue (also triggers the flushing of the aggregate window, in
order to obtain dynamic windows).

49

Results #1 (data set 1)

50

Figure shows a perfect overlap, the

technique by Elle et al. 2005 can be

recreated online using Esper

Occlusion occurs

after 80 seconds

Perfusion

after 170

seconds

SELECT edv(y)

FROM Accelerometer

WINDOW LENGTH(512)

Easier than MATLAB

Results #2 (data set 2)

51

Plot shows fixed sliding window (512

samples) and dynamic triggered window

(based on QRS detection) => less variance!

SELECT edv(y)

FROM Accelerometer TRIGGER

WINDOW BY QRSD(ECG.value)

Sudden drop caused

by ultra sound probe

Occlusion Perfusio

n

Results #3 (data set 2)

52

The bottom plot represents local minimum

value for the accelerometer stream

SELECT edv(y), min(y) FROM

Accelerometer TRIGGER WINDOW

BY QRSD(ECG.value)

Query with added local minimum

value => easy to change!

Implementation

• Java and Esper (open source component for event processing

available at http://esper.codehaus.org/)

• Use existing window model, Esper is not changed

• Base window boundaries on the manipulated timestamps

(registered as external timestamps in the Esper query)

calculated from external / trigger query

53

Case study 1

• Ischemia detection (joint work with IVS, Oslo, Norway)

– Real data from surgeries on pigs

– Accelerometer attached to heart surface, used to identify irregular movements

– ECG stream is used to detect each heartbeat (QRS Detection)

– Upon detecting heartbeats, flush current window over the accelerometer stream

54

Case study 2

• Simple sine signal (we know ground truth)

– Investigate more thoroughly the effect (overhead) of the window model itself

55

Results

• Improvement of analysis results

56

Results

• Low overhead for memory and CPU of the adaptive window

technique confirmed by performance evaluation

57

Conclusion

• DSMSs can be used for real-time analysis => easy
for medical practitioners to investigate novel
methods

• Illustrated a method of online analysis of medical
sensor data focusing on detection of myocardial
ischemia

• Added beat-to-beat detection by using ECG
– Results with less variance

• Introduced a new type of window for DSMSs:
Variable length triggered tumbling windows

58

