An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance

Authors: Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. Morley Mao, Subhabrata Sen, Oliver Spatscheck

CS577 Brett Levasseur

Outline

- Introduction
- LTE Data And Local Testbed
- LTE Network Characteristics
- Abnormal TCP Behavior
- Bandwidth Estimation
- Network Applications in LTE
- Conclusions
- Questions

Introduction

- Previously observed LTE network characteristics
 - Higher bandwidths
 - Lower RTT
 - TCP underutilizes links
- This work examines
 - Measurements from real LTE network
 - TCP bandwidth estimation algorithm
 - Power management

LTE Network

- UE User Equipment
- RAN Radio Access Network
- CN Core Network
- Monitor Author's data collection point
- PEP Performance Enhancing Proxy

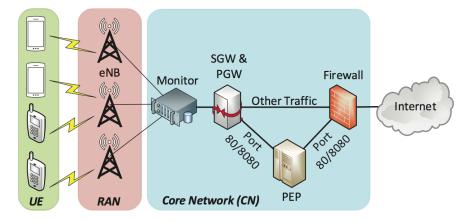
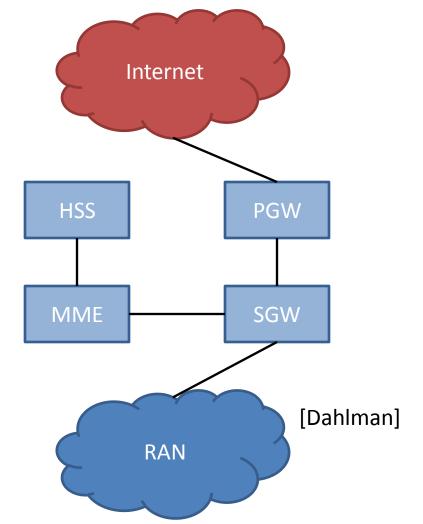



Figure 1: Simplified network topology of the large LTE carrier from which we obtained our measurement data.

WP

LTE Network

- PEP Not part of normal CN
- Intercepts TCP traffic on ports 80 and 8080
- Splits end to end TCP connection to two
 - UE to PEP
 - PEP to server
- Performs compression and caching

LTE Data

- Covered 22 eNBs in a US city
- Collection from 10/12/2012 10/22/2012
- Collected
 - IP and transport headers
 - 64 bit timestamps per packet
 - HTTP headers
 - 3.8 billion packets
 - 2.9 TB of traffic (324 GB of headers)

Local Test Bed

- UE
 - Samsung Galaxy S III
 - Android 4.0.4 / Linux Kernel 3.0.8
- Server
 - 2GB RAM / 2.4 GHz Intel Core 2 CPU
 - Ubuntu 12.04 / Linux Kernel 3.2.0-36-generic
 TCP CUBIC
- Measured TCP throughput and RTT
- Used two different LTE networks

Outline

- Introduction
- LTE Data And Local Testbed
- LTE Network Characteristics
- Abnormal TCP Behavior
- Bandwidth Estimation
- Network Applications in LTE
- Conclusions
- Questions

Measurements

- Majority of traffic is TCP
- Majority of the remainder is UDP

TCP Flows (95.3 %)	HTTP (80/8080) 50.1%		
	HTTPS (443) 42.1%		
TCP Bytes (97.2%)	HTTP (80/8080) 76.6%		
	HTTPS (443) 14.8%		

ΜΡΙ

TCP Flow Size

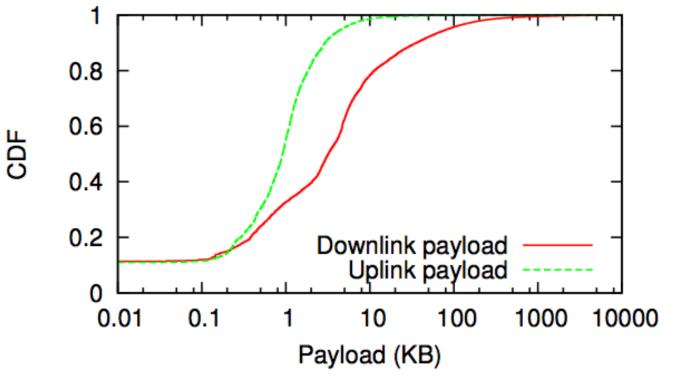


Figure 2: Distribution of TCP flow sizes.

TCP Flow Size

90%, less than 2.9 KB					
	10.9% have no uplink				
UL Flows	Top 0.1% (by payload) accoubytes	payload) account for 63.9% of total			
	73.6% of the top flows are images				
	90%, less than 35.9 KB				
	11.3% have no downlink				
DL Flows	Top 0.6% (by payload) account for 61.7% of total bytes				
	Top 5% (by payload size)	Payload >= 85.9 KB			
		80.3% use HTTP			
		74.4% video or audio			

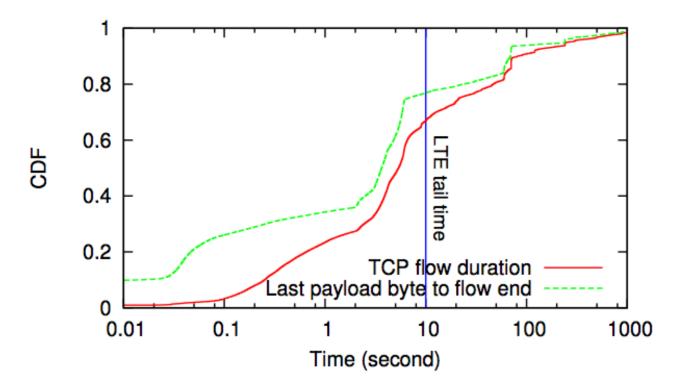


Figure 3: Distribution of flow duration and the duration between the last payload byte to the end of the flow.

TCP Flow Duration

Flows	Duration
48.1%	< 5 seconds
6.8%	>= 3 minutes
2.8%	>= 10 minutes

Flows	Termination
86.2%	TCP FIN
5.4%	TCP RESET
8.5%	TCP SYN (did not connect properly)

Tail Time

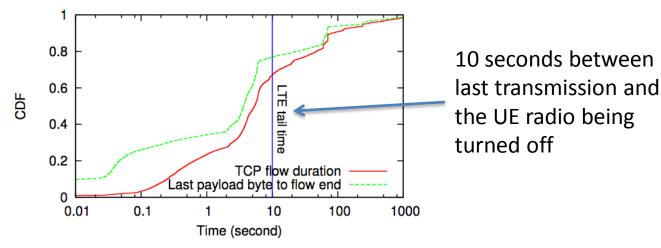
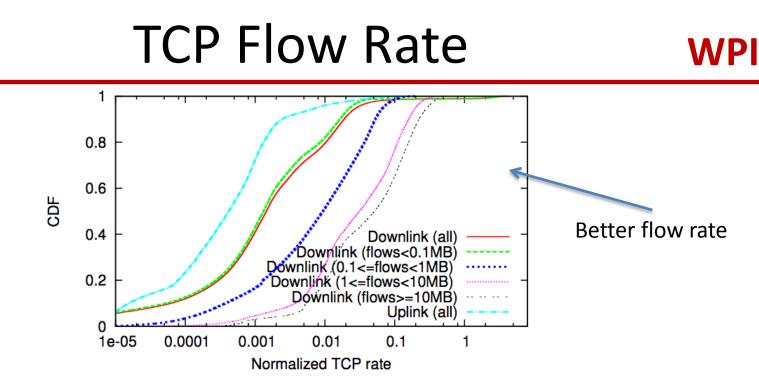



Figure 3: Distribution of flow duration and the duration between the last payload byte to the end of the flow.

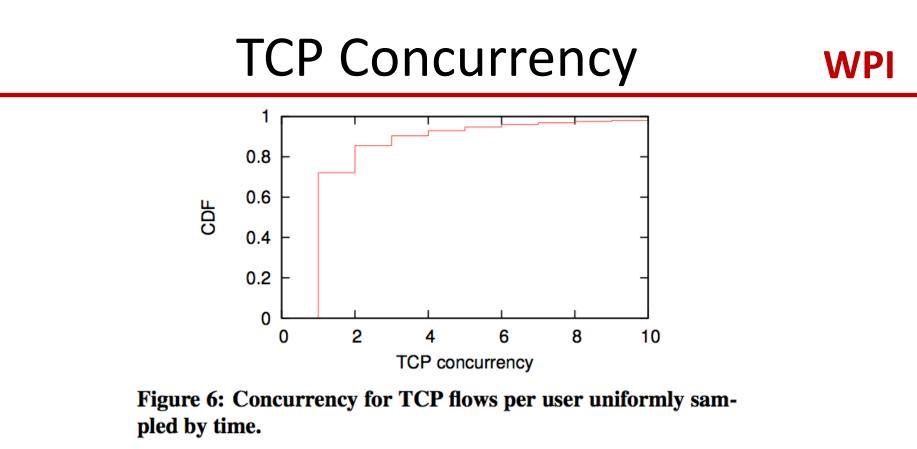


Figure 4: An example of delayed FIN packet and its impact on radio resource management.

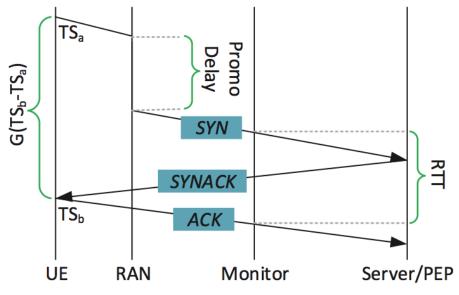
Figure 5: Distributions of normalized TCP flow rates.

- Larger flows send faster than smaller flows
- Flow duration and rate are more negatively correlated than on Internet backbone

- 72.1% of the time there is only one active TCP flow
- Possibly higher for smartphones

RII WPI 1 Better 0.8 0.8 RTT 0.6 0.6 CDF CDF 0.4 C-M 0.4 M-P 0.2 0.2 C-S **DNS** lookup time 0 0 0.5 1.5 2.5 3.5 3 4 0 0.2 0.4 0.6 0.8 0 Ratio of RTT(M-S) / RTT(C-M) Normalized RTT Figure 8: Distribution of the radio between uplink and down-

Figure 7: Distributions of normalized handshake RTT and link RTT (for non-PEP traffic). DNS lookup time.


C-M = Client to monitor RTT to M-S > C-M M-P = Monitor to PEP M-S = Monitor to server C-S = Client to server

- RTT Monitor to server > than client to monitor
- Indicates wireless link is not largest delay factor

LTE Promotion Delay

- Time to turn radio on
- G(TS_b TS_a) = RTT seen
 by UE
- G Inverse ticking frequency of UE's clock

Percentile	Promotion Delay
25%	319ms
50%	435ms
75%	558ms

Figure 9: Estimating the promotion delay.

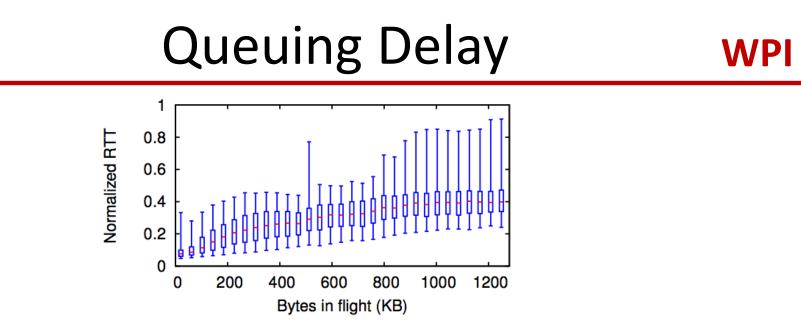


Figure 10: Downlink bytes in flight vs. downstream RTT.

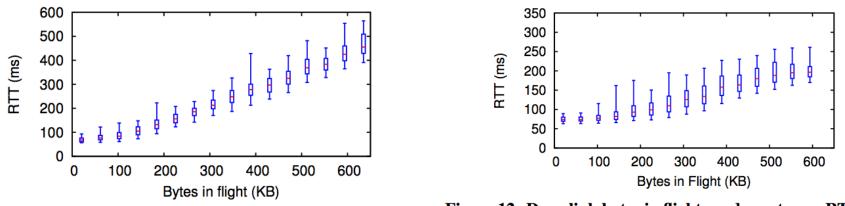


Figure 11: Downlink bytes in flight vs. downstream RTT (controlled lab experiments with LTE Carrier A).

Queuing Delay

- 10% of large flows have > 200 KB inflight
- Leads to
 - Queue delay
 - Longer RTT
 - Created by long flows
 but impacts short
 flows

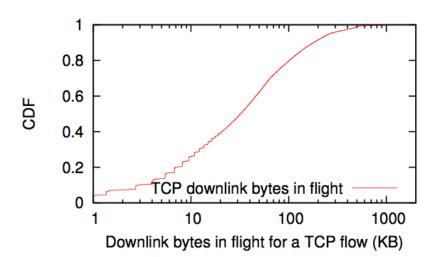


Figure 13: Distribution of downlink bytes in flight for large flows (> 1 MB).

- 38.1% of flows have no retransmission
- 0.06% is the median of flows with retransmission
- Physical/MAC layer retransmission reduced transport layer retransmission
- Study does not look at LTE RLC layer retransmissions

Measurement History

	Table 1. Comparing with previous measurement studies									
Study	Our Results	3GTest [14]	4GT	est [13]			SpeedT	'est [31]		
Time	October 2012	Aug to Dec 2009	Oct to	Dec 2011	F	bruary 2	1 2011 to J	une 5 201	1 (15 weeks	s)
Location	One US Metro Area	Across U.S.	Acro	oss U.S.	New Yor	rk City	Madison	WI, US	Manche	ster UK
Туре	LTE Only	Four 3G ISPs	LTE	WiMAX	Cellular	WiFi	Cellular	WiFi	Cellular	WiFi
5% TCP DL*	569	74 – 222**	2112	431	108	404	99	347	28	267
50% TCP DL	9185	556 – 970	12740	4670	1678	7040	895	5742	1077	4717
95% TCP DL	24229	1921 – 2943	30812	10344	12922	17617	3485	14173	3842	15635
5% TCP UL	38	24 - 52	387	172	52	177	55	168	25	180
50% TCP UL	2286	207 - 331	5640	1160	772	2020	478	1064	396	745
95% TCP UL	8361	434 – 664	19358	1595	5428	10094	1389	5251	1659	5589
5% HS RTT	30	125 – 182	37	89	68	21	99	24	98	34
50% HS RTT	70	160 – 200	70	125	159	54	184	69	221	92
95% HS RTT	467	645 - 809	127	213	786	336	773	343	912	313

Table 1: Comparing with previous measurement studies

* TCP DL: downlink throughput (kbps). TCP UL: uplink throughput (kbps). HS RTT: TCP handshake RTT (ms). 5%, 50%, 95% are percentiles. ** For a range x - y, x and y are the result of the worst and the best carriers, respectively, for that particular test.

- LTE outperforms 3G, WiMAX and WiFi
- 4GTest LTE is higher than measurements

– Possibly due to rate limiting at remote server

Outline

- Introduction
- LTE Data And Local Testbed
- LTE Network Characteristics
- Abnormal TCP Behavior
- Bandwidth Estimation
- Network Applications in LTE
- Conclusions
- Questions

Duplicate ACKs

- Medians
 - 17 Dup ACKs
 - 2 out of order packets
- Over 29% of flows have > 100 Dup ACKs
- Ratio Dup ACK / out of order
 - 24.7% of flows over 25
 - Some up to 5,000
 - 1 out of order packet can cause many Dup ACKs

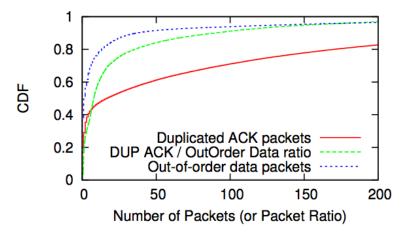


Figure 14: Observed duplicate ACKs and packet reordering in large TCP flows.

- Undesired Slow Start Large RTT triggers RTO
- Author's measure undesired slow start with $R_{ss} = rac{ heta_{[100,200]}}{ heta_{[0,100]}}$
- Where $\theta_{[t_1,t_2]}$ is average downlink throughput from t_1 ms to t_2 ms after last Dup ACK
- $R_{ss} > 1.5$ in slow start
 - 20.1% of large flows have >= 1 lost packet
 - 12.3% of all large flows have >= 1 lost packet

Undesired Slow Start

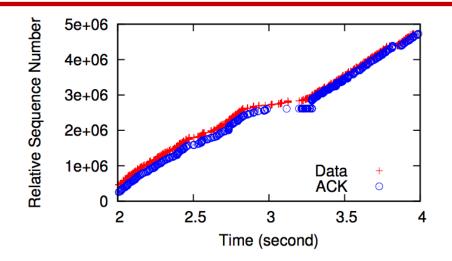


Figure 15: Duplicate ACKs not triggering a slow start.

 $R_{ss} = 1.0$

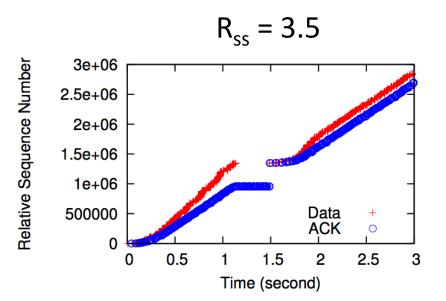


Figure 16: Duplicate ACKs triggering a slow start.

Mitigate Undesired Slow Start **WPI**

- Update RTO from duplicate ACKs with SACK
 - Take difference between SACK window of two consecutive duplicate ACKs
 - 82.3% of flows used SACK in dataset
 - < 1% of flows had packet reordering</p>
- Update RTO from duplicate ACKs without SACK
 - Assume duplicate ACKs in response to data packets in order
- Prevent > 95% of observed undesired slow starts

Outline

- Introduction
- LTE Data And Local Testbed
- LTE Network Characteristics
- Abnormal TCP Behavior
- Bandwidth Estimation
- Network Applications in LTE
- Conclusions
- Questions

TCP Transmission Rate

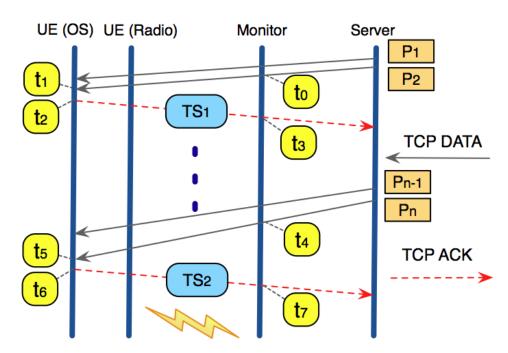


Figure 17: Typical TCP data transfer.

Sending Rate from Monitor

$$R_{snd} = \frac{S(n-2)}{t_4 - t_0}$$

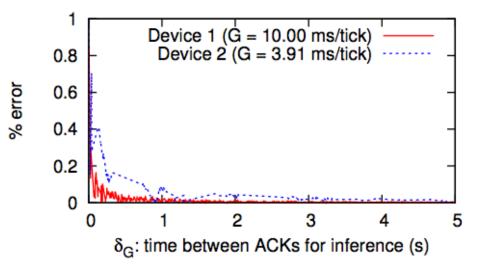
Receive Rate at UE

$$R_{rcv} = \frac{S(n-2)}{t_5 - t_1}$$

TCP Timestamps

- Replace t₁ and t₅ with t₂ and t₆
- t₂ and t₆ originate at UE
- Replace t₂ and t₆ with TCP Timestamps
- Infer G

$$R_{rcv} \approx \frac{S(n-2)}{t_6 - t_2}$$


$$R_{rcv} \approx \frac{S(n-2)}{G(TS_2 - TS_1)}$$

$$G \approx \frac{TS_2 - TS_1}{t_7 - t_3}$$

Estimation Accuracy

- For accurate G
 - $t_7 t_3 > \delta_G$
- Error rate of G drops as δ_G grows
- At δ_G = 3 seconds error rate < 0.1%

Figure 18: G inference and the selection of δ_G .

Estimation Accuracy

Flows	G
5.9%	NA
57.3%	1ms/tick
36.4%	10ms/tick
0.4%	100ms/tick

- With δ_G = 3 seconds the error rate of inferred G < 0.1% for the majority of flows
- If G is unknown it is estimated from its formula

- G is known or inferred
- Calculate R_{snd}
- If R_{snd} >= C AND packets in order AND no duplicates AND last packet is not delayed ACK

 $-R_{rcv}$ calculated

- If C too small underestimate
- If C too large not enough samples
- C = 30Mbps

Validation 1 0.8 0.6 CDF 0.4 Actual throughput 1.0s window 0.2 Error 0.1s window Estimated bandwidth 0 -5 0 5 10 15 20 25 30 Downlink throughput (Mbps)

Figure 19: CDF of bandwidth estimation results for LTE network (controlled lab experiments with Carrier A).

- Compare server side estimate and UE trace
- 1 sec sample window average error rate is 7.9%
- 0.1 sec sample window average error rate has higher variation

Validation

- Actual throughput is UE perceived throughput
- Used 1 sec sample window
- Actual throughput varies around 10Mbps
- Error varies by +- 1
 Mbps

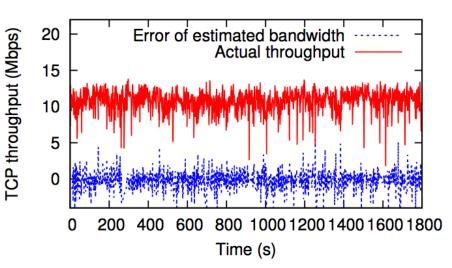
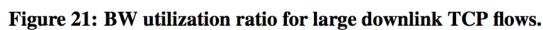
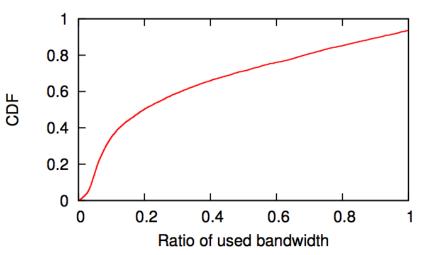
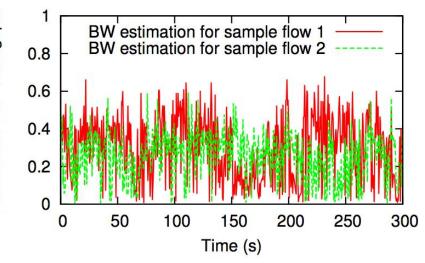




Figure 20: Time series of bandwidth estimation for LTE network (controlled lab experiments with Carrier A).

Large Flow Utilization

- Median ratio 19.8%
- 71.3% of large flows < 50% utilization
- 6.4% use more bandwidth than estimated
- Average ratio 34.6%
- Low utilization, flows last longer
 - Higher radio usage



LTE Bandwidth Variation

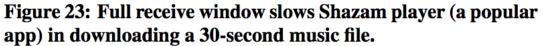
- Two large flows
 - Two different users
- Two different users
 Two different times
 Bandwidth varies over time
 Condition of the wireless Bandwidth varies over time
 - link
 - Movement
 - Resource scheduling

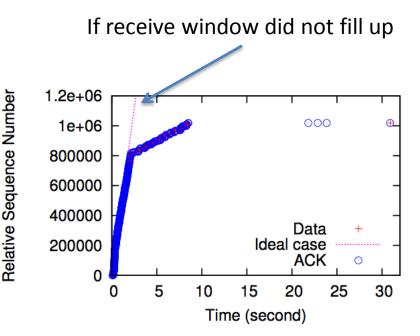
- Experiments with modifiable RTT
 - Used iptables to redirect packets to scheduler
 - Scheduler changes available bandwidth similar to observed LTE
 - Scheduler injects delays to impact RTT
- Under small RTT TCP utilizes 95% of the bandwidth
- RTT > 400ms utilization drops below 50%

Outline

- Introduction
- LTE Data And Local Testbed
- LTE Network Characteristics
- Abnormal TCP Behavior
- Bandwidth Estimation
- Network Applications in LTE
- Conclusions
- Questions

HTTP Characterization


WPI


HTTP Content	% of traffic
Video	37.8%
Images	19.5%
Text	11.8%
Zip	8.3%
Audio	6.5%
Other	5.6%
Unknown	10.5%

 12.9% of video content is octet-streams generated mostly by video players

TCP Receive Window

- Shazam app on iOS
- 30s, 1 MB audio
- 0s 2s 3Mbps
- Recv window full
- 2s 9s < 300 Kbps
- Download could have been done in 2.5s
- Connection not closed until 30s

- Receive Window around 131,712 +- 600 bytes
 - True for > 90% of iOS, Android and Windows
 Phone flows
- Applications not reading from receive buffer quickly enough
- 52.6% of downlink TCP flows experience full receive window
 - 91.2% of these bottleneck happens in initial 10% of the flow duration

Application Design

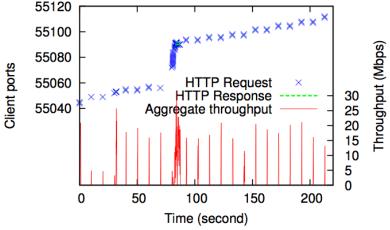

- Netflix on iOS
- Multiple HTTP byte-range requests
- Many short HTTP responses
 - < 1s
 - -1 4MB

Figure 24: The periodic request behavior of Netflix player limiting its overall throughput.

 Periodic requests leaves radio idle

10 5 0 50 100 150 200 0 Time (second)

Discussion

- Manufactures reduce TCP receive window
 - Decreases buffer bloat
 - Underutilizes network
- Use application buffers
 - Relieves TCP buffers
 - Allows radio interface to close sooner
- Increase amount downloaded per request, decrease number of requests

Conclusions

- WPI
- Not updating RTT from Dup ACKs causes performance issues with single packet loss
- Bandwidth estimation algorithm
 - 71.3% of large flows have < 50% utilization
 - High variation of network bandwidth
 - cwnd too slow to adjust
- TCP receive window throttles 52.6% of downlink flows
- App design underutilizes bandwidth

Questions

- Huan J. et all, An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance. SIGCOMM 2013.
- Dahlman E. et all, 4G LTE/LTE-Advanced for Mobile Broadband. Academic Press, 2011.