Mobility-Assisted Data Collection in Wireless Sensor Networks: Scheme Design and Modeling Analysis

Liang He
University of Victoria, Canada
Nankai University, China
Outline

• Introduction
• Potential Applications
• Problem Division
 • Scheme Design for Offline Scenario
 • Modeling Analysis for Online Scenario
• Conclusions
Introduction

• Data Collection is the main application for wireless sensor networks
Introduction

• Traditional Approach for Data Collection
Introduction

• Mobility-Assisted Data Collection
 – mobile elements (MEs)
 – mobile sinks, data mules, mobile sensors, …
 – low & balanced energy consumption for sensor nodes
 – suitable for sparse networks
Outline

• Introduction

• Potential Applications

• Problem Division
 • Scheme Design for Offline Scenario
 • Modeling Analysis for Online Scenario

• Conclusions
Potential Applications

• NEPTUNE Canada

• Sabertooth
Potential Applications

- Seatext + Smart Buoy
Potential Applications

• RQ-7A/B Shadow 200

• Other Applications
 – in Gulf oil leak, 2010
 – ...

7/18/2013
Outline

• Introduction
• Potential Applications
• Problem Division
 • Scheme Design for Offline Scenario
 • Modeling Analysis for Online Scenario
• Conclusions
Problem Division

Mobile Elements

Moving speed is limited

Larger data collection latency

Optimizing the motion of MEs is critical
Problem Division

- Energy limitation on sensors
 - Optimize energy consumption
 - Utilize mobility to collect data, large delay
 - Minimize data delay
 - Motion schedule of MEs
 - Further improvement
 - Hybrid approach: combine mobility and multihop communication
Problem Division

• Scheme Design for Offline Scenario
 – obtain the nearly-optimal data collection scheme for MEs

• Modeling Analysis for Online Scenario
 – provide performance evaluation of the network
 – guide the scheme design for online scenario
Outline

• Introduction
• Potential Applications
• Problem Division
 • Scheme Design for Offline Scenario
 • Modeling Analysis for Online Scenario
• Conclusions
Scheme Design

• Scenario: start from the easiest
 • single ME
 • constant travel speed
 • unit disk communication model
 • w/o constraints on data rate
 • locations of sensor nodes are available to ME

• Objective
 • reduce data collection latency through obtaining a near-optimal travel path
Scheme Design

\[
\min_{T \in T} |T| \quad \text{s.t.} \quad \forall s_i \in S, \ \exists e \in T, \ |s_i, e| \leq d,
\]

- **Combine-Skip-Substitute scheme**
 - consists of 3 steps
 - optimizes the tour progressively
 - outperforms the best known heuristic so far
Scheme Design

• **Step 1: starts with an optimal TSP tour**
 – Concorde \(^{[1]}\)
 • efficiency verified TSP solver
 – reduces search space of the problem
 • heuristic in nature
 • verified efficiency \(^{[2]}\)
 – \(S \rightarrow T_{tsp} \)

\(^{[1]}\) Concorde TSP solver, http://www.tsp.gatech.edu/concorde.html

Scheme Design

• Step 2: combines collection sites
 – modified Welzl’s algorithm
 – finds smallest enclosing disk in linear time
 – returns true if radius smaller than comm. range
 – adopts it along T_{tsp}, and combine collection jobs with best effort
 – $T_{tsp} \rightarrow T_{com}$
Scheme Design

- **Step 3: skip-and-substitute collection sites**
 - skip
 - substitute
 - binary search with control parameter delta
 - in a progressively manner
 - $T_{com} \rightarrow T_{css}$
Scheme Design

- CSS Demonstration
Scheme Design

• **Correctness**
 - \(T_{tsp} \), \(T_{com} \), and \(T_{css} \) are all feasible

• **Optimality**
 - \(|T_{css}| \leq |T_{com}| \leq |T^*| + 2n'd\)
 - \(|T_{css}| \geq L \sqrt{\frac{n''}{2}}\)
 - \(n' \) and \(n'' \) are the number of collection sites in \(T_{com} \) and \(T_{css} \), respectively

• **Time complexity**
 - \(C_{tsp} + O(n^3 \log n) + O(n^2 \log(1/delta)) \)

\[\text{the dominating one} \]
Scheme Design

• Evaluation

![Graph showing tour length vs. number of sensor nodes for different schemes: TSP, COM, LC, CSS, and TSP-LB. The CSS scheme is marked with CSS, the lower bound is marked with lower bound, and the label-covering scheme is marked with label-covering.]
Scheme Design

- Extension
 - single ME \rightarrow multiple MEs
 - w/o constraints on data rate \rightarrow with constraints on data rate
 - offline \rightarrow online
 - good or not?
 - constant travel speed \rightarrow variable travel speed
 - unit disk communication model \rightarrow stochastic model
Outline

• Introduction
• Potential Applications
• Problem Division
 • Scheme Design for Offline Scenario
 • Modeling Analysis for Online Scenario
• Conclusions
Modeling Analysis

• Scenario: start from the easiest
 • single ME with constant travel speed
 • sensor nodes initiate data collection requests when their buffer are full
 • ME maintains a service queue for received requests, and serve them with the FCFS discipline

• Objective
 • theoretically analyze the system performance with different service disciplines
Modeling Analysis

• **Queue-based Modeling**
 - **Arrival Rate**
 • exponential inter-arrival time
 - **Service Rate**
 • model service time as travel time
 • distance distribution between two locations \(^1\)

\[
t_m = \frac{d}{v}
\]

Modeling Analysis

• Analytical Results
 – expected values of system measures
 – probability distribution of queue length and response time
 • through an embedded Markov chain
Modeling Analysis

- FCFS with Combination (FCFSC)

\[P(x, n, r, L) = \binom{n}{x} F_D \left(\frac{r}{L} \right)^x (1 - F_D \left(\frac{r}{L} \right))^{n-x} \]

- Combination Probability
Modeling Analysis

• Evaluation
 – Probability Distribution of Queue Length
Modeling Analysis

• Extension
 – single ME \rightarrow multiple MEs
 – FCFS, FCFSC \rightarrow NJN, NJNC
 – homogeneous MEs \rightarrow heterogeneous MEs
Outline

• Introduction
• Potential Applications
• Problem Division
 • Scheme Design for Offline Scenario
 • Modeling Analysis for Online Scenario
• Conclusions
Conclusions

The problem is far from being solved!
Thanks!