Wireless Sensor Network (WSN) Communications: Localization, MAC Protocols and Backend Applications

> Imperial College London

Patryk Mazurkiewicz, Mario Diaz, Abdelmalik Bachir and Kin K. Leung

> May 12, 2010 Imperial College

Publications

Journal papers

- 1. M.O. Diaz and K.K. Leung, "Efficient data aggregation and transport in Wireless sensor networks", *Wiley Wireless Communications and Mobile Computing*, 2009.
- 2. A. Bachir, M. Heusse, A. Duda, and K. K. Leung, "Preamble MAC Protocols with Persistent Receivers in Wireless Sensor Networks," *IEEE Trans. on Wireless Communications*, March 2009.
- 3. A. Bachir, M. Dohler, T. Watteyne and K.K. Leung, "MAC Essentials for Wireless Sensor Networks," *IEEE Communications Surveys and Tutorials*, Second issue 2010.

Conference papers

- 1. Mario O. Díaz and K.K. Leung, "A test-based scheduling protocol (TBSP) for periodic data gathering in wireless sensor networks", 3rd International Workshop on Multiple Access Communications (MACOM), Barcelona, Spain, 13-14 September 2010.
- 2. F. Theoleyre, A. Bachir, N. Chakchouk, A. Duda and K.K. Leung, "Energy Efficient Network Structure for Synchronous Preamble Sampling in Wireless Sensor Networks," IEEE ICC 2010, May 2010.
- 3. Mario O. Díaz and Kin K. Leung, "Randomized scheduling algorithm for data aggregation in wireless sensor networks," IEEE European Wireless Conference, Lucca, Italy, April 2010.
- 4. A. Bachir, F. Theoleyre, K.K. Leung and A. Duda, "Energy-Efficient Broadcasts in Wireless Sensor Networks with Multiple Virtual Channels," IEEE WCNC 2010, April 2010.
- 5. P.Mazurkiewicz and K.K.Leung, "Performance of Angle-and-Range-Based Localization of Wireless Sensors", Pacific Rim Conference on Communications, Computers and Signal Processing, Canada, August 2009.
- 6. Mario O. Díaz and Kin K. Leung, "Dynamic data aggregation and transport in wireless sensor networks," IEEE PIMRC, Cannes, France, September 2008.
- 7. P.Mazurkiewicz and K.K.Leung, "Clique-Based Localization Algorithm for Sparse Networks of Wireless Sensors," Military CIS Conference, Poland, September 2008.
- 8. P.Mazurkiewicz and K.K.Leung, "Clique-based Location Estimation Enhancement in GPS-free Localization for Wireless Sensors", ICCCN 2008, USA, August 2008.
- 9. A.Magnani and K.K.Leung, "Self-Organized, Scalable GPS-Free Localization of Wireless Sensors", IEEE WCNC Conference, China, March 2007.

Research Topics Investigated

- Sensor localization
 - Devised distributed, efficient algorithms to determine sensor locations without help of GPS (e.g., London underground tunnels) by use of multiple antennas
 - Evaluated performance of proposed localization algorithms
 - Prototyped aspects of the proposed algorithms
- MAC protocols
 - Devised MAC protocols suitable for infrastructure monitoring
 - Combined MAC with data aggregation functions
 - Evaluated proposed protocols
- Backend applications
 - Developed software to visualize monitored data and control sensing operations remotely

Research Problem: Localization

• Scenario

- Multi-hop sparse network of low-power sensors placed along a large structure, e.g. an underground tunnel.
- A small fraction of all nodes: reference nodes, know their position by external means. Other nodes: unknown nodes, do not know their position.
- All nodes have capability of performing the self-organizing, distributed localization algorithm which aims at determining the positions of all unknown nodes.
- All nodes have specific hardware to measure some physical information that can be used for calculating the spatial correlations between nodes.
- Goals
 - Obtaining estimations of locations of unknown nodes by the means of ranging or angular measurements or gravity sensing.

Rigidity: Uniquely identify sensor locations

Rigidity Concept

- Local capability of a distributed localization algorithm to find a unique location of every sensor node
- Rigidity requirement is expressed in the minimum degree of node connectivity required by the algorithm to uniquely determine node locations
- Rigidity Requirements
 - Depend on the characteristics of the localization algorithm in use
 - Minimum Connectivity (MC) for rigidity for a specific algorithm
 - Greater connectivity than the minimum needed for good performance

Hardware capabilities	MC	Example
Single angle of arrival (AoA) /ranging (only one of two)	4	GPS, triangulation
Single AoA + ranging (both used)	3	DHL Algorithm
Two AoA's on $^{\perp}$ planes + ranging	2	COBALT Algorithm
Two AoA's + range + gravity or magnetic north	1	COBALT Algorithm

5

COBALT: Clique-of-Nodes Based Localization Algorithm

- Uses redundancy of groups of nodes (cliques) for eradicating location errors
- Require several location maps of a clique and merge them by MMSE
- Minimum connectivity: 1

- Applicable for sensor networks with rich capabilities. The following capabilities are required for each sensor node:
 - 3-D antenna array for 2π -range azimuth and π -range elevation measurements
 - Ranging measurement, e.g., ToA or TDoA
 - Accelerometer (for earth gravity direction)

COBALT Performance: Simulation results

• Setting: 500 m of tunnel, average hop distance 10m

COBALT Performance (Cont'd)

Depleted Hardware Requirement Localization (DHL) Algorithm

- Antenna array is reduced to linear antenna array
 In particular, as little as 2-element array
- Minimum connectivity: 3

Summary of Contributions on Localization

- Three algorithms proposed & studied
 - Error-eradicating COBALT algorithm (Clique-Of-nodes BAsed LocalizaTion) by use of redundancy available in groups of nodes (called cliques). Applicable for high redundancy of spatial measurements.
 - Using rich spatial information: Two angles + range + gravity direction no network topological requirements. Always rigid: It works whenever the network is connected. Requires a complex antenna array.
 - DHL algorithm (Depleted Hardware Localization) uses simple, linear antenna array and ranging

Hardware Required	MC	Example
Single AoA /ranging (only one of these)	4	GPS, triangulation
Single AoA + ranging (both used)	3	DHL Algorithm
Two AoA on $^{\perp}$ planes (AoA) + ranging	2	COBALT Algorithm
Two AoA's + range + gravity or magnetic north	1	COBALT Algorithm

Prototyping of Localization Algorithm

- Prototyping partner: SignalGeneriX (Cyprus)
 - SignalGeneriX designed and produced the array of directional antennas for MicaZ
 - Imperial contributed by antenna measurements in the tunnel environment (Aldwych London Underground tunnel in August 2009)
 - Below: prototypes of 2 directional antennas (left picture), sensor node board connected to 1 directional antenna (right picture)

Localization demonstration with SignalGeneriX

Demonstration objectives

- Show newly designed and manufactured hardware
 - Directional antennas
 - MicaZ add-on for interfacing the antennas with MicaZ node
- Use algorithm suitable for the hardware capability
 - AoA method is used
 - Simple form of error correction based on MMSE is performed
- Demonstration scenario
 - Three reference nodes with known positions
 - One node with unknown position

Demo works!

MAC Protocols: Monitoring Scenario

- Assumptions
 - A single data sink
 - Multi-hop network
 - Small batteries
 - Relatively slow-changing wireless links
 - Globally time synchronization
 - Event-triggered reporting of large volumes of data
- Application: large infrastructure
 - Fracture detection using acoustic emissions
 - Wires of the main cable from suspension bridge over the Humber
 - Concrete and steel bridges and tunnels
 - Vibration monitoring in tunnels and bridges

In-network data aggregation

- Assuming that data from neighboring nodes is correlated, thus can be aggregated and compressed inside the network
- Every node generally executes the following steps
 - Receive data from its neighbors
 - Aggregate received data with its own data
 - Forward compressed data towards the sink
- We propose two protocols. Their respective goals are deciding:
 - The **route** followed by the packets to be aggregated, which is a tree
 - The schedule for the packet transmissions

TDMA frame consisting of transmission slots

1	2	3	4	1	2	3	4	1	2	3	4
---	---	---	---	---	---	---	---	---	---	---	---

Fast Aggregation Tree (FAT) Protocol

- Goal of FAT
 - Quickly construct a data aggregation tree in a duty-cycled network
- Functioning
 - Radio transceivers of sensor nodes are turned on periodically with period $\mathrm{T}_{\mathrm{s}}.$
 - There is an offset of the schedules of nodes in different tiers
- Key advantage
 - Time to construct the tree is divided by the number of tiers
 - Therefore, nodes can sleep for longer periods and save energy

FAT Performance

- FAT's tiered architecture restricts possible parents, not optimal
- Traversal time is the time to transmit data, a measure of the quality of the aggregation tree
- SPT is the shortest path tree
- The algorithm Centralized1 is only good for high aggregation ability
- FAT is relatively good across all degrees of aggregation ability

- Problems of the existing scheduling algorithms
 - Some of them are centralized
 - The obtained schedule may be infeasible
 - The *k*-hop interference model fails occasionally
 - The joint interference from multiple nodes may be unfeasible
 - Our simulation results are in the table below
 - BF*k* neglects the interference caused more than *k* hops away

	Fraction of unduly scheduled nodes						
ho	BF2	BF3	RandSched				
7	0.0796	$pprox 10^{-4}$	0 (theoretical)				
14	0.0321	$< 10^{-4}$	0 (theoretical)				
28	0.0098	< 10 ⁻⁴	0 (theoretical)				

RandSched: Scheduling for data aggregation

- Distributed scheduling protocol
- Initialization phase
- Testing phase
 - In CF/it is decided which nodes gain access to TF/
 - A node only gains a transmission slot if it has been proved that it can tolerate other nodes' interference
- Data transmission phase

Properties of RandSched

- Medium overhead, but scale well because RandSched is a distributed protocol
 - 12 slots per Contention Frame (CF) are sufficient to decide the transmitters of a certain slot
 - This number of slots is independent of node density and network size
- Shorter schedule than $BF_k \rightarrow Iower Iatency and higher throughput (See figure below)$
 - M is the number of slots of the schedule
 - N is the number of nodes in the network

Test Based Scheduling Protocol (TBSP)

- Differences with RandSched
 - Only supports uncompressed traffic (no data aggregation)
 - It is adaptive (it enables parts of the schedule to be recomputed without affecting other nodes' schedules)
- Targeted applications
 - Periodic data gathering with slowly-varying traffic
 - Latency of 15 TDMA frames to acquire a slot can be tolerated
- Advantage of TBSP over comparable protocols
 - Lower energy consumption (no need to monitor other nodes' schedules)
 - Lower probability of dismissing a neighbor as unreachable

Conclusions on MAC Protocols

- FAT constructs an aggregation tree in a duty-cycled environment quickly
- RandSched produces a TDMA schedule for data aggregation reliably
- TBSP adapts a TDMA schedule for uncompressed traffic with little power consumption
 - Uncompressed traffic is necessary in a preliminary data-collecting stage in order to determine how data can be compressed

WINES: Smart Infrastructure

Backend Application

Web application architecture

- Horizontal menu
 - WSN deployments
- Vertical menu
 - operations for the selected deployment
 - Google Maps
 - Google Earth
 - Notification
- Login screen
 - only users with a passphrase can register
 - only registered users can use notification service

Google Maps - Example

Google Earth - Example

Notification service - Example

WINES	infrastr	uctu	re.org				A [†] A
				Baker St.	Ferriby Rd.	Anchorage	На
OVERVIEW	Subscribe/Unsubscribe	Query Name	Parameter	Operator	Value		
 Presentation 	V	bat30	Battery	<	30		
			External Temperatur	re 💌 < 💌 🛛			
ANCHORAGE TOOLS	Update						
• Google Maps							
 Google Earth 							
Notification Service	Th	nis serv	ice is onl	y availa	ble to		
SIGN IN		re	egistered	users			
Hi Abdelmalik Bachir			0				
LOG OUT							

Notification Service

- a javascript dynamic webpage for each deployment
 - Accessible only for authorized users
- a set of input boxes for users
 - To set simple queries
 - Specify parameter operator value
 - e.g. External temperature > 15
- an ergonomic interface for add/deleting queries
 - Just check or uncheck tick-boxes
 - Previous queries are in grayed input boxes to avoid unintentional modification