

Radio Propagation Modelling

Ian Wassell and Yan Wu

University of Cambridge Computer Laboratory

Why is it needed?

- To predict coverage between nodes in a wireless network
- Path loss is different from environment to environment, e.g., in-building is different to outdoors.
- Knowledge of path loss enables system parameters to be defined, e.g., transmit power, receiver sensitivity and antenna gains.
- Path loss models include:
 - Empirically based obtained from measurements
 - Analytical solution of EM equations
 - Simulation e.g., based on ray tracing or FDTD

Definition of Path Loss

• We will define path loss as a positive number expressed in dB. In which case the expression for received power (in dBm) is:

 $P_{RX} = P_{TX} + G_{TX} + G_{RX} - P_{L}$

Where P_{TX} is the transmit power in dBm, G_{TX} and G_{RX} are the transmit and receive antenna gain (in dBi) respectively, and P_L is the instantaneous value of the path loss.

 The receiver will cease to detect the received data correctly when the received signal power (P_{RX}) falls below the specified receiver sensitivity level, P_{RX(min)}

Analytical Path Loss Models

- The path loss (PL) is a is a function of antenna separation and depends upon the propagation environment. For example,
 - In 'free space' it is given by:

 $P_L=10 \log_{10}(4\pi r/\lambda)^2$ i.e., 20dB/decade with distance

Where r is the antenna separation (in m), and λ is the wavelength

Analytical Path Loss Models

• Other analytical path loss models are available, e.g., for the so called 'flat earth' or '2-ray' model.

• Provided $r >> d_1$, d_2 , then the path loss is given by:

 $P_L=10 \log_{10}(r^2/d_1d_2)^2$ i.e., 40dB/decade with distance

 We can also handle the case where r >> d₁, d₂ is not satisfied by explicitly including the variation of the ground reflection coefficient as a function of distance, wavelength and polarisation.

Flat Earth Path Loss

- Flat earth (or '2-ray') and free space path loss at 2.4GHz
 - Vertical polarisation (VP), dry soil

Other Path Loss Modelling Approaches

- Empirically based path loss models can be determined for particular environments of interest, e.g., outdoor microcells, tunnels. However,
 - Requires an extensive measurement campaign
 - Is costly
 - And is only applicable to the range of parameters actually measured, e.g., frequency, antenna spacing, dimensions of environment
- Consequently, EM based models are also popular, e.g.,
 - Ray tracing
 - Finite difference time domain (FDTD)

EM Based Modelling

- Need to have detailed plans of the deployment site and material electrical parameters
- Computationally heavy particularly FDTD
- Ray tracing needs to be carefully tuned for the particular application, otherwise problems can result
- Can predict path loss over a wide range of parameter values, i.e., no additional measurements required

FDTD Modelling

- Finite Difference Time Domain (FDTD) is a time domain iterative solution to Maxwell's equations
- Full 3D FDTD model takes too long to run and uses too much memory
 - Problem reduced to 2D
 - Results need to be corrected to yield results corresponding with a 3D model – so called 'modified 2D FDTD'
 - Correction factors (CFs) determined for well known free space and flat earth models
 - Concept extended to tunnels
 - CF determined by comparison with measurements

FDTD Modelling

Good match between measurements and 2D FDTD simulations

Aldwych tunnel 866MHz

Aldwych tunnel 2.45GHz

Empirical Modelling

- Measurements performed at 2 frequencies (868 MHz and 2.45 GHz) for various antenna positions
 - Continuous wave battery powered transmitter
 - Half-wave sleeve dipole antennas
 - Anritsu portable spectrum analyser to measure receive signal power
 - Sampled values of received power logged on a laptop
- Fit dual-slope regression lines to data to determine mean path loss
- Fit parameterised probability distribution to data variation around the estimated mean level, e.g., Rician, Rayleigh distribution

Empirical Modelling

Radio Propagation Characteristics in Tunnels - Qualitative Results

Investigated Factors	PL Performance		3.2m	1 9m
Antenna Position	CC case > Side cases		2m	
Operating Frequency	CC case: 868MHz > 2.45GHz SS case: 868MHz ≈ 2.45GHz			
Material	CC case: Cast Iron ≈ Concrete SS case: Cast Iron > Concrete		Investigated Factors	Fading Effects
Course	Straight \approx Curved		Antenna	
Diameter	Only for concrete tunnels 868MHz: $5.1m > 3.8m$ 2.45GHz: $5.1m \approx 3.8m$		Position	CC case < Side cases
			Operating Frequency	868MHz < 2.45GHz
			Material	Cast Iron > Concrete

- As we have seen, the received signals exhibit so called 'Multipath fading'
 - Destructive or constructive interference between multiple arriving signals at the receive antenna owing to reflections in the environment

CAMBRIDGE 1209-2009

Current Approaches to Overcome Fading

- Increase transmit power
 - Battery life penalty
- Improve receiver sensitivity
 - Cost implications
- Relay/multihop networks
 - Cost, installation time
- Increase antenna gain
 - Size, cost, robustness issues

Antennas

Effect of Close to Wall Antennas

UNIVERSITY OF 800 YEARS CAMBRIDGE 1209-2009

Diversity to Overcome Fading

- Dependent on the environment geometry, materials
 - Can be modelled stochastically difficult to predict exact location
 - Fade positions static in a static environment
 - Possibly solutions include frequency or space diversity

Frequency Diversity

- Measurements conducted every 10m in 90m cast iron lined tunnel
 - Measurements of received signal measured on 32 freq. channels, 5MHz spacing in 2.4GHz ISM band

Frequency Diversity

- See change in path loss from channel to channel
- Note effect of changing environment

Frequency Diversity (FD)

- Potential diversity gain quantified using correlation coefficient (CC)
 - Values <0.7 indicate worthwhile gain

- Hopping by 1 channel gives reasonable FD gain
- FD gain increases with channel separation
- Antennas on Same side (SSS) of tunnel wall experience less FD gain than antennas on opposite side (SOS)

CAMBRIDGE 1209-2009

Frequency Diversity (FD)

- Potential diversity gain quantified using correlation coefficient (CC)
 - Values <0.7 indicate worthwhile gain

- FH gain decreases with distance
- SOS in general experience greater FD gain than SSS

CAMBRIDGE 1209-2009

Frequency Diversity (FD)

- FD has the potential to achieve diversity gain in the tunnel environment
- Use of FD will improve link reliability and so ease deployment problems
- No additional hardware required, but will make media access control (MAC) layer more complicated
- Will give some immunity to radio frequency (RF) interference
- We will also be investigating the use of space diversity (SD)

Conclusions

- Propagation knowledge important when planning deployment
 - We have determined empirical and FDTD models
- Antenna gain, radiation pattern and location important
- Fading a problem
 - Difficult to accurately predict
 - Frequency Diversity may be applicable in some environments