Efficient Hop ID Based Routing for Sparse Ad Hoc Networks

Yan Chen

Lab for Internet & Security Technology (LIST)
Northwestern University
Outline

• Motivation
• Hop ID and Distance Function
• Dealing with Dead Ends
• Evaluation
• Conclusion
Motivation: Routing in Ad Hoc Networks

- **On-demand routing**
 - Flood routing requests
 - No preprocessing needed
 - But poor scalability

- **Geographical routing**
 - Use node’s location (or virtual coordinates) as address
 - Greedy routing based on geographic distance
Dead End Problem

- Geographic distance d_g fails to reflect hop distance d_h (shortest path length)

$$d_g(E, D) < d_g(A, D)$$

But

$$d_h(A, D) < d_h(E, D)$$
Existing Work Insufficient for Sparse Ad Hoc Networks

Geographic routing suffers from dead end problem in sparse networks.

Existing Work Insufficient for Sparse Ad Hoc Networks
Outline

• Motivation
• Hop ID and Distance Function
• Dealing with Dead Ends
• Evaluation
• Conclusion
Virtual Coordinates

• Problem definition
 – Define and build the virtual coordinates, and
 – Define the distance function based on the virtual coordinates
 – Goal: routing based on the virtual coordinates has few or no dead ends even in critical sparse networks
 • virtual distance reflects real distance
 • $d_v \approx c \cdot d_h$, c is a constant
What’s Hop ID

- Hop distances of a node to all the landmarks are combined into a vector, i.e. the node’s Hop ID.
Lower and Upper Bounds

- Triangulation inequality

\[
d_h(A, L_i) + d_h(B, L_i) \geq d_h(A, B) \quad (1)
\]
\[
| d_h(A, L_i) - d_h(B, L_i) | \leq d_h(A, B) \quad (2)
\]

- Hop ID of A is \((H_1^{(1)}, H_2^{(1)}, \ldots, H_m^{(1)})\)
- Hop ID of B is \((H_1^{(2)}, H_2^{(2)}, \ldots, H_m^{(2)})\)

\[
L = \text{Max}(| H_k^{(1)} - H_k^{(2)} |) \leq d_h \leq \text{Min}(H_k^{(1)} + H_k^{(2)}) = U
\]
Lower Bound Better Than Upper Bound

- One example: 3200 nodes, density $\lambda = 3\pi$
- Lower bound is much closer to hop distance

![Bar chart showing comparison between lower and upper bounds vs difference to hop distance. The lower bound is consistently closer to the hop distance across different difference categories.]
Lower Bound Still Not The Best

- $H(S) = 2 \ 1 \ 5$
- $H(A) = 2 \ 2 \ 4$
- $H(D) = 5 \ 4 \ 3$
- $L(S, D) = L(A, D) = 3$
- $|H(S) - H(D)| = 3 \ 3 \ 2$
- $|H(A) - H(D)| = 3 \ 2 \ 1$
Other Distance Functions

• Make use of the whole Hop ID vector

\[D_p = p \sqrt[p]{\sum_{k=1}^{m} |H_k^{(1)} - H_k^{(2)}|^p} \]

• If \(p = \infty \), \(D_p = L \)

• If \(p = 1 \), \(D_p = \sum_{k=1}^{m} |H_k^{(1)} - H_k^{(2)}| \)

• If \(p = 2 \), \(D_p = \sqrt{\sum_{k=1}^{m} |H_k^{(1)} - H_k^{(2)}|^2} \)

• What values of \(p \) should be used?
The Practical Distance Function

• The distance function d should be able to reflect the hop distance d_h
 $- d \approx c \cdot d_h$, c is a constant
 $- L$ is quite close to d_h ($c = 1$)
• If $p = 1$ or 2, Dp deviates from L severely and arbitrarily
• When p is large, $Dp \approx L \approx d_h$
 $- p = 10$, as we choose in simulations
Power Distance Better Than Lower Bound

- 3200 nodes, density $\lambda=3\pi$
Outline

• Motivation
• Hop ID and Distance Function
• Dealing with Dead Ends
• Evaluation
• Conclusion
Dealing with Dead End Problem

- With accurate distance function based on Hop ID, dead ends are less, but still exist
- Landmark-guided algorithm to mitigate dead end problem
 - Send packet to the closest landmark to the destination
 - Limit the hops in this detour mode
- Expending ring as the last solution
Example of Landmark Guided Algorithm

- **Detour Mode**

- **Dead End**

- \(D_p(S, D) < D_p(L_2, D) \)

- \(D_p(S, D) > D_p(A, D) \)
Practical Issues

• Landmark selection and maintenance
 – $O(m \cdot N)$ where m is the number of landmarks and N is the number of nodes

• Hop ID adjustment
 – Mobile scenarios
 – Integrate Hop ID adjustment process into HELLO message (no extra overhead)

• Location server
 – Can work with existing LSes such as CARD, or
 – Landmarks act as location servers
Outline

• Motivation
• Hop ID and Distance Function
• Dealing with Dead Ends
• Evaluation
• Conclusion
Evaluation Methodology

- Simulation model
 - Ns2, not scalable
 - A scalable packet level simulator
 - No MAC details
 - Scale to 51,200 nodes
- Baseline experiment design
 - N nodes distribute randomly in a 2D square
 - Unit disk model: identical transmission range
- Evaluation metrics
 - Routing success ratio
 - Shortest path stretch
 - Flooding range
Evaluation Scenarios

- Landmark sensitivity
- Density
- Scalability
- Mobility
- Losses
- Obstacles
- 3-D space
- Irregular shape and voids
Simulated Protocols

- HIR-G: Greedy only
- HIR-D: Greedy + Detour
- HIR-E: Greedy + Detour + Expending ring
- GFR: Greedy geographic routing
- GWL: Geographic routing without location information [Mobicom03]
- GOAFR+: Greedy Other Adaptive Face Routing [Mobihoc03]
Number of Landmarks

- 3200 nodes, density shows average number of neighbors
- Performance improves slowly after certain value (20)
- Select 30 landmarks in simulations
• HIR-D keeps high routing success ratio even in the scenarios with critical sparse density.
• Shortest path stretch of HIR-G & HIR-D is close to 1.
Scalability

- HIR-D degrades slowly as network becomes larger
- HIR-D is not sensitive to number of landmarks
Conclusions

• Hop ID distance accurately reflects the hop distance and
• Hop ID base routing performs very well in sparse networks and solves the dead end problem
• Overhead of building and maintaining Hop ID coordinates is low
Secure Wireless Communication

- Secure communication in high-speed WiMAX networks
 - Design secure communication protocols through formal methods and vulnerability analysis
 - Wireless network anomaly/intrusion detection
 - Separating noises, interference, hidden terminal problems, etc.
Future Work: Sensor Networks (1)

- Topology Control in Sensor Networks
 - Motivation
 - Optimize sensing coverage and communication coverage
 - Sensing coverage
 - Active nodes cover all the required area without holes
 - Let as many as possible nodes to sleep to save energy
 - Communication coverage
 - Select active nodes to form a well-connected network
 - Enable simple routing
 - Routing paths are good in terms of bandwidth, delay and energy cost
Future Work: Sensor Networks (2)

• Routing in Sensor Networks
 – Motivation
 • Optimize lifetime of sensors
 • Avoid hotspots
 – Proposed routing: Position-based routing
 • Distance metric takes energy cost into account, e.g., HopID
Future Work: Delay Tolerant Networks

Applications
- Interplanetary Internet
- Spacecraft communications
- Mobile ad hoc networks w/ disconnections (Zebranet)
- Military/tactical networks
- Disaster response

• Challenges
 - Stochastic Mobility
 - Sparse connectivity
 - May not have contemporaneous end-to-end path
 - Delay tolerability
 - With an upper bound of the delay (e.g., Mars: 40 min RTT)
 - Limited buffer size

• Focus: Routing and Message Delivery
Research methodology

Combination of theory, synthetic/real trace driven simulation, and real-world implementation and deployment
Related Work to Dead End Problem

• Fix dead end problem
 – Improves face routing: GPSR, GOAFR+, GPVFR
 – Much longer routing path than shortest path

• Reduce dead ends
 “Geographic routing without location information” [Rao et al, mobicom03]
 – Works well in dense networks
 – Outperforms geographic coordinates if obstacles or voids exist
 – Virtual coordinates are promising in reducing dead ends
 – However, degrades fast as network becomes sparser
How Tight Are The Bounds?

• Theorem [FOCS'04)]
 – Given a certain number \((m)\) of landmarks, with high probability, for most nodes pairs, \(L\) and \(U\) can give a tight bound of hop distance
 • \(m\) doesn’t depend on \(N\), number of nodes
 – Example: If there are \(m\) landmarks, with high probability, for 90% of node pairs, we have \(U \leq 1.1L\)
If two nodes are very close and no landmarks are close to these two nodes or the shortest path between the two nodes, U is prone to be an inaccurate estimation.

$U(A, B) = 5$, while $d_h(A, B) = 2$
Landmark Selection
Hop ID Adjustment

- Mobility changes topology
- Reflooding costs too much overhead
- Adopt the idea of distance vector
Build Hop ID System

- Build a shortest path tree
- Aggregate landmark candidates
- Inform landmarks
- Build Hop ID
 - Landmarks flood to the whole network.
- Overall cost
 - $O(m^*n)$, $m =$ number of LMs, $n =$ number of nodes
Motivation

- Geographic routing suffers from dead end problem in sparse networks

Fabian Kun, Roger Wattenhofer and Aaron Zollinger, Mobihoc 2003
Virtual Coordinates

- Problem definition
 - Define the virtual coordinates
 - Select landmarks
 - Nodes measure the distance to landmarks
 - Nodes obtain virtual coordinates
 - Define the distance function
 - Goal: virtual distance reflects real distance
 - $d_v \approx c \cdot d_h$, c is a constant