

Efficient Hop ID Based Routing for Sparse Ad Hoc Networks

Yan Chen

Lab for Internet & Security Technology (LIST) Northwestern University

Outline

- Motivation
- Hop ID and Distance Function
- Dealing with Dead Ends
- Evaluation
- Conclusion

Motivation: Routing in Ad Hoc Networks

- On-demand routing
 - -Flood routing requests
 - -No preprocessing needed
 - -But poor scalability
- Geographical routing
 - Use node's location (or virtual coordinates) as address
 - Greedy routing based on geographic distance

Dead End Problem

• Geographic distance d_g fails to reflect hop distance d_h (shortest path length)

 $d_g(E,D) < d_g(A,D)$

But

 $d_h(A,D) < d_h(E,D)$

Existing Work Insufficient for Sparse Ad Hoc Networks 9 WOrse 0.9 8 GFG/GPSR 0.8 Connectivity 7 Shortest Path Span 0.7 6 0.6 Frequency 5 0.5 p^* 0.4 4 stGreedy Success 0.3 3 better 0.2 2 0.1 critical 0 2 6 8 10 12 0 4

Network Density [nodes per unit disk]

Geologiamp Kion, o Rtinge is Wfatte in hoo fed and Avad pr Zidleingier, s plaose hoet 2000 s

Outline

- Motivation
- Hop ID and Distance Function
- Dealing with Dead Ends
- Evaluation
- Conclusion

Virtual Coordinates

- Problem definition
 - -Define and build the virtual coordinates, and
 - Define the distance function based on the virtual coordinates
 - Goal: routing based on the virtual coordinates has few or no dead ends even in critical sparse networks
 - virtual distance reflects real distance
 - $d_v \approx c \cdot d_h$, *c* is a constant

What's Hop ID

 Hop distances of a node to all the landmarks are combined into a vector, *i.e.* the node's Hop ID.

Lower and Upper Bounds

Triangulation inequality

 $d_{h}(A, L_{i}) + d_{h}(B, L_{i}) \ge d_{h}(A, B) \quad (1)$ $|d_{h}(A, L_{i}) - d_{h}(B, L_{i})| \le d_{h}(A, B) \quad (2)$

- Hop ID of *A* is $(H_1^{(1)}, H_2^{(1)}, \dots, H_m^{(1)})$
- Hop ID of *B* is $(H_1^{(2)}, H_2^{(2)}, \dots, H_m^{(2)})$

 $L = M_{k}ax(|H_{k}^{(1)} - H_{k}^{(2)}|) \le d_{h} \le M_{k}in(H_{k}^{(1)} + H_{k}^{(2)}) = U$

Lower Bound Better Than Upper Bound

- One example: 3200 nodes, density λ=3π
- Lower bound is much closer to hop distance

Lower Bound Still Not The Best

- $H(S) = 2 \ 1 \ 5$
- $H(A) = 2 \ 2 \ 4$
- $H(D) = 5 \ 4 \ 3$
- L(S, D) = L(A, D) = 3
- |H(S) H(D)| = 332
- |H(A) H(D)| = 321

Other Distance Functions

• Make use of the whole Hop ID vector

$$D_{p} = \sqrt[p]{\sum_{k=1}^{m} |H_{k}^{(1)} - H_{k}^{(2)}|^{p}}$$

• If
$$p = \infty$$
, $D_p = L$

• If
$$p = 1$$
, $D_p = \sum_{k=1}^m |H_k^{(1)} - H_k^{(2)}|$

• If
$$p = 2$$
, $D_p = \sqrt{\sum_{k=1}^{m} |H_k^{(1)} - H_k^{(2)}|^2}$

• What values of *p* should be used?

The Practical Distance Function

- The distance function d should be able to reflect the hop distance d_h
 - $-d \approx c \cdot d_h$, c is a constant
 - -L is quite close to d_h (c = 1)
- If p = 1 or 2, Dp deviates from L severely and arbitrarily
- When *p* is large, $Dp \approx L \approx d_h$

- p = 10, as we choose in simulations

Power Distance Better Than Lower Bound

• 3200 nodes, density $\lambda = 3\pi$

Outline

- Motivation
- Hop ID and Distance Function
- Dealing with Dead Ends
- Evaluation
- Conclusion

Dealing with Dead End Problem

- With accurate distance function based on Hop ID, dead ends are less, but still exist
- Landmark-guided algorithm to mitigate dead end problem
 - Send packet to the closest landmark to the destination
 - Limit the hops in this detour mode
- Expending ring as the last solution

Practical Issues

- Landmark selection and maintenance
 O(*m*·*N*) where *m* is the number of landmarks and *N* is the number of nodes
- Hop ID adjustment
 - Mobile scenarios
 - Integrate Hop ID adjustment process into HELLO message (no extra overhead)
- Location server
 - Can work with existing LSes such as CARD, or
 - Landmarks act as location servers

Outline

- Motivation
- Hop ID and Distance Function
- Dealing with Dead Ends
- Evaluation
- Conclusion

Evaluation Methodology

- Simulation model
 - Ns2, not scalable
 - A scalable packet level simulator
 - No MAC details
 - Scale to 51,200 nodes
- Baseline experiment design
 - *N* nodes distribute randomly in a 2D square
 - Unit disk model: identical transmission range
- Evaluation metrics
 - Routing success ratio
 - Shortest path stretch
 - Flooding range

Evaluation Scenarios

- Landmark sensitivity
- Density
- Scalability
- Mobility
- Losses
- Obstacles
- 3-D space
- Irregular shape and voids

Simulated Protocols

- HIR-G: Greedy only
- HIR-D: Greedy + Detour
- HIR-E: Greedy + Detour + Expending ring
- GFR: Greedy geographic routing
- GWL: Geographic routing without location information [Mobicom03]
- GOAFR+: Greedy Other Adaptive Face Routing [Mobihoc03]

Number of Landmarks

- 3200 nodes, density shows average number of neighbors
- Performance improves slowly after certain value (20)
- Select 30 landmarks in simulations

Density

- HIR-D keeps high routing success ratio even in the scenarios with critical sparse density.
- Shortest path stretch of HIR-G & HIR-D is close to 1.

Scalability

- HIR-D degrades slowly as network becomes larger
- HIR-D is not sensitive to number of landmarks

Conclusions

- Hop ID distance accurately reflects the hop distance and
- Hop ID base routing performs very well in sparse networks and solves the dead end problem
- Overhead of building and maintaining Hop ID coordinates is low

Secure Wireless Communication

- Secure communication in high-speed WiMAX networks
 - Design secure communication protocols through formal methods and vulnerability analysis
 - Wireless network anomaly/intrusion detection
 - Separating noises, interference, hidden terminal problems, etc.

Future Work: Sensor Networks (1)

- **Topology Control in Sensor Networks**
 - Motivation
 - Optimize sensing coverage and communication coverage
 - Sensing coverage
 - Active nodes cover all the required area without holes
 - Let as many as possible nodes to sleep to save energy
 - Communication coverage
 - Select active nodes to form a well-connected network
 - Enable simple routing
 - Routing paths are good in terms of bandwidth, delay and energy cost

Future Work: Sensor Networks (2)

- Routing in Sensor Networks
 - Motivation
 - Optimize lifetime of sensors
 - Avoid hotspots
 - Proposed routing: Position-based routing
 - Distance metric takes energy cost into account, e.g., HopID

Future Work: Delay Tolerant Networks

- Applications
 - Interplanetary Internet
 - Spacecraft communications
 - Mobile ad hoc networks w/ disconnections (Zebranet)
 - Military/tactical networks
 - Disaster response
- Challenges
 - Stochastic Mobility
 - Sparse connectivity
 - May not have contemporaneous end-to-end path
 - Delay tolerability
 - With an upper bound of the delay (e.g., Mars: 40 min RTT)
 - Limited buffer size
- Focus: Routing and Message Delivery

Research methodology

Combination of theory, synthetic/real trace driven simulation, and real-world implementation and deployment

China Education and Research Network 中国教育和科研计算机网

CERNE

Related Work to Dead End Problem

- Fix dead end problem
 - Improves face routing: GPSR, GOAFR+, GPVFR
 - Much longer routing path than shortest path
- Reduce dead ends
 - "Geographic routing without location information" [Rao et al, mobicom03]
 - Works well in dense networks
 - Outperforms geographic coordinates if obstacles or voids exist
 - Virtual coordinates are promising in reducing dead ends
 - However, degrades fast as network becomes sparser

How Tight Are The Bounds?

- Theorem [FOCS'04)]
 - Given a certain number (*m*) of landmarks, with high probability, for most nodes pairs, *L* and *U* can give a tight bound of hop distance
 - *m* doesn't depend on *N*, number of nodes
 - Example: If there are *m* landmarks, with high probability, for 90% of node pairs, we have U≤1.1L

U Is Not Suitable for Routing

- If two nodes are very close and no landmarks are close to these two nodes or the shortest path between the two nodes, U is prone to be an inaccurate estimation
- U(A, B) = 5, while $d_h(A, B)=2$

Landmark Selection

Hop ID Adjustment

- Mobility changes topology
- Reflooding costs too much overhead
- Adopt the idea of distance vector

Build Hop ID System

- Build a shortest path tree
- Aggregate landmark candidates
- Inform landmarks
- Build Hop ID
 - Landmarks flood to the whole network.
- Overall cost
 - O(m*n), m = number of LMs,
 n=number of nodes

Mobility

Motivation

Network Density [nodes per unit disk]

 Gaographic, reuting sufferation deadends Zollinger, problem incomparse networks

Virtual Coordinates

- Problem definition
 - Define the virtual coordinates
 - Select landmarks
 - Nodes measure the distance to landmarks
 - Nodes obtain virtual coordinates
 - Define the distance function
 - Goal: virtual distance reflects real distance
 - $-d_v \approx c \cdot d_h$, *c* is a constant