Efficient Hop ID Based Routing for Sparse Ad Hoc Networks

Yan Chen
Lab for Internet \& Security Technology (LIST) Northwestern University

Outline

- Motivation
- Hop ID and Distance Function
- Dealing with Dead Ends
- Evaluation
- Conclusion

Motivation: Routing in Ad Hoc Networks

On-demand routing
-Flood routing requests
-No preprocessing needed
-But poor scalability

- Geographical routing
-Use node's location (or virtual coordinates) as address
-Greedy routing based on geographic distance

Dead End Problem

- Geographic distance d_{g} fails to reflect hop distance d_{h} (shortest path length)

$$
\begin{aligned}
& d_{g}(E, D)<d_{g}(A, D) \\
& \text { But } \\
& d_{h}(A, D)<d_{h}(E, D)
\end{aligned}
$$

Existing Work Insufficient for Sparse Ad Hoc Networks

Outline

- Motivation
- Hop ID and Distance Function
- Dealing with Dead Ends
- Evaluation
- Conclusion

Virtual Coordinates

- Problem definition
- Define and build the virtual coordinates, and
- Define the distance function based on the virtual coordinates
-Goal: routing based on the virtual coordinates has few or no dead ends even in critical sparse networks
- virtual distance reflects real distance
- $d_{v} \approx c \cdot d_{h}, c$ is a constant

What's Hop ID

- Hop distances of a node to all the landmarks are combined into a vector, i.e. the node's Hop ID.

Lower and Upper Bounds

- Triangulation inequality

$$
\begin{align*}
& d_{h}\left(A, L_{i}\right)+d_{h}\left(B, L_{i}\right) \geq d_{h}(A, B) \tag{1}\\
& \left|d_{h}\left(A, L_{i}\right)-d_{h}\left(B, L_{i}\right)\right| \leq d_{h}(A, B) \tag{2}
\end{align*}
$$

- Hop ID of A is $\quad\left(H_{1}^{(1)}, H_{2}^{(1)}, \cdots, H_{m}^{(1)}\right)$
- Hop ID of B is $\quad\left(H_{1}^{(2)}, H_{2}^{(2)}, \cdots, H_{m}^{(2)}\right)$

$$
L=\operatorname{Max}_{k}\left(\left|H_{k}^{(1)}-H_{k}^{(2)}\right|\right) \leq d_{h} \leq \operatorname{Min}_{k}\left(H_{k}^{(1)}+H_{k}^{(2)}\right)=U
$$

Lower Bound Better Than Upper Bound

- One example: 3200 nodes, density $\lambda=3 \pi$
- Lower bound is much closer to hop distance

Lower Bound Still Not The Best

- $\mathrm{H}(S)=215$
- $\mathrm{H}(A)=224$
- $\mathrm{H}(\mathrm{D})=543$
- $\mathrm{L}(S, D)=\mathrm{L}(A, D)=3$
- $|\mathrm{H}(S)-\mathrm{H}(D)|=332$
- $|\mathrm{H}(A)-\mathrm{H}(D)|=321$

Other Distance Functions

- Make use of the whole Hop ID vector

$$
D_{p}=\sqrt[p]{\sum_{k=1}^{m}\left|H_{k}^{(1)}-H_{k}^{(2)}\right|^{p}}
$$

- If $p=\infty, \quad D_{p}=L$
$\begin{aligned} \text { - If } p=1, & D_{p}=\sum_{k=1}^{m}\left|H_{k}^{(1)}-H_{k}^{(2)}\right| \\ \text { - If } p=2, & D_{p}=\sqrt{\sum_{k=1}^{m}\left|H_{k}^{(1)}-H_{k}^{(2)}\right|^{2}}\end{aligned}$
- What values of p should be used?

The Practical Distance Function

- The distance function d should be able to reflect the hop distance d_{h}
$-d \approx c \cdot d_{h}, c$ is a constant
$-L$ is quite close to $d_{h}(c=1)$
- If $p=1$ or $2, D p$ deviates from L severely and arbitrarily
- When p is large, $D p \approx L \approx d_{h}$
- $p=10$, as we choose in simulations

Power Distance Better Than Lower Bound

- 3200 nodes, density $\lambda=3 \pi$

Outline

- Motivation
- Hop ID and Distance Function
- Dealing with Dead Ends
- Evaluation
- Conclusion

Dealing with Dead End Problem

- With accurate distance function based on Hop ID, dead ends are less, but still exist
- Landmark-guided algorithm to mitigate dead end problem
- Send packet to the closest landmark to the destination
- Limit the hops in this detour mode
- Expending ring as the last solution

Example of Landmark Guided Algorithm

Practical Issues

- Landmark selection and maintenance
$-\mathrm{O}(m \cdot N)$ where m is the number of landmarks and N is the number of nodes
- Hop ID adjustment
- Mobile scenarios
- Integrate Hop ID adjustment process into HELLO message (no extra overhead)
- Location server
- Can work with existing LSes such as CARD, or
- Landmarks act as location servers

Outline

- Motivation
- Hop ID and Distance Function
- Dealing with Dead Ends
- Evaluation
- Conclusion

Evaluation Methodology

- Simulation model
- Ns2, not scalable
- A scalable packet level simulator
- No MAC details
- Scale to 51,200 nodes
- Baseline experiment design
- N nodes distribute randomly in a 2D square
- Unit disk model: identical transmission range
- Evaluation metrics
- Routing success ratio
- Shortest path stretch
- Flooding range

Evaluation Scenarios

- Landmark sensitivity
- Density
- Scalability
- Mobility
- Losses
- Obstacles
- 3-D space
- Irregular shape and voids

Simulated Protocols

- HIR-G: Greedy only
- HIR-D: Greedy + Detour
- HIR-E: Greedy + Detour + Expending ring
- GFR: Greedy geographic routing
- GWL: Geographic routing without location information [Mobicom03]
- GOAFR+: Greedy Other Adaptive Face Routing [Mobihoc03]

Number of Landmarks

- 3200 nodes, density shows average number of neighbors
- Performance improves slowly after certain value (20)
- Select 30 landmarks in simulations

Density

- HIR-D keeps high routing success ratio even in the scenarios with critical sparse density.
- Shortest path stretch of HIR-G \& HIR-D is close to 1.

Scalability

- HIR-D degrades slowly as network becomes larger
- HIR-D is not sensitive to number of landmarks

Conclusions

- Hop ID distance accurately reflects the hop distance and
- Hop ID base routing performs very well in sparse networks and solves the dead end problem
- Overhead of building and maintaining Hop ID coordinates is low

Secure Wireless Communication

- Secure communication in high-speed WiMAX networks
- Design secure communication protocols through formal methods and vulnerability analysis
- Wireless network anomaly/intrusion detection
- Separating noises, interference, hidden terminal problems, etc.

Future Work: Sensor Networks (1)

Topology Control in Sensor Networks

- Motivation
- Optimize sensing coverage and communication coverage
- Sensing coverage
- Active nodes cover all the required area without holes
- Let as many as possible nodes to sleep to save energy
- Communication coverage
- Select active nodes to form a well-connected network
- Enable simple routing
- Routing paths are good in terms of bandwidth, delay and energy cost

Future Work: Sensor Networks (2)

- Routing in Sensor Networks
- Motivation
- Optimize lifetime of sensors
- Avoid hotspots
- Proposed routing: Position-based routing
- Distance metric takes energy cost into account, e.g., HopID

Future Work: Delay Tolerant Networks

Applications

- Interplanetary Internet
- Spacecraft communications
- Mobile ad hoc networks w/ disconnections (Zebranet)
- Military/tactical networks
- Disaster response
- Challenges
- Stochastic Mobility
- Sparse connectivity
- May not have contemporaneous end-to-end path
- Delay tolerability
- With an upper bound of the delay (e.g., Mars: 40 min RTT)
- Limited buffer size
- Focus: Routing and Message Delivery

Research methodology

Combination of theory，synthetic／real trace driven simulation，and real－world implementation and deployment

Microsoft

AT\＆T

＊Fermilab

China Education and Research Network中国敬南和和研计算机网

Related Work to Dead End Problem

- Fix dead end problem
- Improves face routing: GPSR, GOAFR+, GPVFR
- Much longer routing path than shortest path
- Reduce dead ends
"Geographic routing without location information" [Rao et al, mobicom03]
- Works well in dense networks
- Outperforms geographic coordinates if obstacles or voids exist
- Virtual coordinates are promising in reducing dead ends
- However, degrades fast as network becomes sparser

How Tight Are The Bounds?

- Theorem [FOCS'04)]
- Given a certain number (m) of landmarks, with high probability, for most nodes pairs, L and U can give a tight bound of hop distance
- m doesn't depend on N, number of nodes
- Example: If there are m landmarks, with high probability, for 90% of node pairs, we have $U \leq 1.1 L$

U Is Not Suitable for Routing

- If two nodes are very close and no landmarks are close to these two nodes or the shortest path between the two nodes, U is prone to be an inaccurate estimation
- $U(A, B)=5$, while $d_{h}(A, B)=2$

Landmark Selection

Hop ID Adjustment

- Mobility changes topology
- Reflooding costs too much overhead
- Adopt the idea of distance vector

Build Hop ID System

- Build a shortest path tree
- Aggregate landmark candidates
- Inform landmarks
- Build Hop ID
- Landmarks flood to the whole network.
- Overall cost
- $\mathrm{O}\left(m^{*} n\right), m=$ number of LMs, $n=$ number of nodes

Mobility

Motivation

- Geographic, reutieg suffersifoom deadAend Zollinger, problere igumarse networks

Virtual Coordinates

- Problem definition
- Define the virtual coordinates
- Select landmarks
- Nodes measure the distance to landmarks
- Nodes obtain virtual coordinates
- Define the distance function
- Goal: virtual distance reflects real distance
$-d_{v} \approx c \cdot d_{h}, c$ is a constant

