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Wireless Sensor Networks

* Integrating computing with the

“physical world”
Sense = Process data 2> Consume
— Dynamic data-driven system

* Large-scale self-organized network

of tiny low-cost nodes with sensors

— Resource constrained nodes:
* CPU: 7 MHz
* Memory: 4KB data, 128KB program
* Bandwidth: 32 kbps
* Power: 2 AA batteries

* Challenge: programming the “network” to
efficiently collect and process data
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WSN: DDDAS Challenges

* Low level detalls
— Resource constraints
— Conserving battery life for long term unattended operation

— Developing distributed algorithms for self-organization
« Communication and data routing between nodes
« Maintain scalability as the number of nodes in the network grow
» Resilience to dynamic changes (e.g., failures)
« Data processing challenges

— Spatial and temporal correlation of data from several independent
sources

— Processing of disparate measurement information to estimate/analyze
the “actual” physical phenomenon

* Providing a simple & high level interface
for end-users to program data processing
algorithms and global system behavior
without the need to understand
low-level issues
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Macroprogramming WSNS

* The traditional approach to DS programming involves
writing “network-enabled” programs for each node

— The program specifies interactions between modules rather
than the expected system behavior
— This paradigm raises several issues:

* Program development is difficult due to the complexity of indirectly
encoding the system behavior and catering to low-level details

* Program debugging is difficult due to hidden side effects and the
complexity of interactions

* Lack of a formal distributed behavior specification precludes
verification of compliance to “expected” behavioral properties

* Macroprogramming entails programming the
system wide behavior of the WSN

— Hides low system-level detalls, e.g., hardware
Interactions, network messaging protocols etc.




Reprogramming?

* Over-the-air reprogramming is a highly
desirable feature for WSN systems

— Deployment costs are high and nodes are often
Inaccessible or remotely located
* Reasons to reprogram

— |terative development cycles
* Change the fidelity or type of measurements
* Update data processing features

— Removal of bugs

* Challenges: (1) Preserving system behavioral
properties, (2) Allowing code reuse and
versioning, (3) Minimizing update costs




Heterogeneous Sensor Networks

* Resource constraints of nodes necessitates
use of heterogeneous devices in the network R S

— High data rate sensors, e.g., disp. sensor P L Ty
— CPU/memory intensive processing, e.g., FFT
— Bandwidth bottlenecks and radio range

— Persistent storage

* Heterogeneity can be supported by deploying aj
hierarchical network

* The macroprogramming architecture should uniformly
encompass heterogeneous devices
— Supporting platform agnostic application development is trivial

* Challenge: Designing an architectural model that scales
performance as resources increase




Objective

To develop a second generation operating
system suite that facilitates rapid
macroprogramming of efficient
self-organized distributed data-driven
applications for WSN
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Related Work

TinyOS
— Low footprint: applications and OS are tightly coupled
— Costly reprogramming: update complete node image
— Aimed at resource constrained nodes
SOS
— Interacting modules compose an application
— OS and modules are loosely coupled
— Modules can be individually updated: low cost
— Lack of sufficient safety properties
— Aimed at resource constrained nodes
Maté — application specific virtual machine
— Event driven bytecode modules run over an interpreter
— Domain specific interpreter
— Very low cost updates of modules
— Major revision require costly interpreter updates
— Ease to program using simple scripting language
— Implemented for constrained nodes
Impala
— Rich routing protocols
— Rich software adaptation subsystem
— Aimed at resource rich nodes




Related Work

* TinyDB
— An application on top of TinyOS
— Specification of data processing behavior using SQL queries
— Limitations in behavioral specifications (due to implementation)
— Difficult to add new features or functionality
— High footprint
* High level macroprogramming languages
— Functional and intermediate programming languages
— Programming interface is restrictive and system mechanisms can not be tuned
— No mature implementations exist
— No performance evaluation is available




Outline

* Challenges

* Related work

* QOur approach

* Current status

* Future directions




Application Model

* Macroprogramming (application) centric
OS design: top down approach

* Application model:

— Application Is composed of data processing
components called processing elements (PE)

— Application is a specification of data-driven
macro system behavior:
* An annotated connection graph of PEs

* Capability based naming of devices in the
heterogeneous network

* PE deployment map: assignment of tasks to
named devices (sets) in the heterogeneous net.




Processing Elements

* Defines “typed” input/output interfaces
— Implemented as data queues

* Performs a data processing operation on input
data
— Programmed in C

— Transactional behavior

* Reads input - processes data = writes output = commits
output enqueue & input dequeue

* Concurrency safety: independent of underlying system’s
concurrency model

* Conceptually a single unit of execution

— Isolation properties Jaw_t avg_t
* Enables independent arch, scaling o— Average

— Asynchronous execution WL
— Code reusability




Connection Graph

* A data-driven macro specification of system behavior

* Connection of instances of data sources (ports), PEs
and services using an annotated graph

* Typed safety: connection interfaces are statically type
checked

* Deterministic system behavior
* A simple example:

C = Clock
A = Accelerometer




The Application

* Device naming (addressing) the last piece in the puzzle:
— Devices are identified based on their capability sets
* For example, devices with photo sensors, devices with fast CPU

* Implemented as masks
* Individual node naming does not scale

@ ACCELEROMETER_SENSOR_NODES: threshold
@ FAST_CPU_NODES: average
@ SERVER_NODE: k_filter, FS

TRIGER(CLOCK(1,rate)[0]) & ACC_SENSOR(2,)[0]
ACC_SENSOR(2,)[0] = threshold(3,0.5)
threshold(3,0.5)[0] =(50)> average(4,)[0]
average(4,)[0] = k_filter(s,) | =(5)> average(4,)[1]
k_filter(s,) > FS(1,)
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Application updation?




OS Design

* Each node has a static OS kernel

— Consists of platform depend and platform independent
layers

e Each node runs service modules

* Each node runs a subset of the components that
compose a macro-application

ng?fpailg ‘Services“Services“ App PE “ App PE “ App PE ‘
_ Platform Independent Kernel
Static OS
Kernel

Hardware Abstraction Layer

‘ HW Drivers H HW Drivers H HW Drivers ‘
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WSN @ BOWEN

BowenlLab Mon Nov 21 16:21:00 2005
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Current Status: OS

* We have completed an initial prototype of
our operating system for AVR pc (Mica2)

* Introductory paper in ICCS 2006

* Current activities
— Exhaustive testing and debugging
— Performance evaluation
— Enhancing generic routing modules
— Enhancing application loading service
— Porting to different platforms (POSIX)
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Future Directions

Implement common data processing modules
that can be reused

— E.g., aggregation, filtering, FFT
Release the OS code

Complete deployment on a real-world large-
scale heterogeneous test bed: BOWEN labs

— |teratively develop a DDDAS system for structural
health monitoring

WYSIWYG application design utility, high level
functional programming abstractions

Exploring other application domains

Exploring distributed algorithms:
— E.g. PE allocation, routing, aggregation, etc.




Questions?

Thank you!




