
Macroprogramming Sensor Networks

for DDDAS Applications

Asad Awan

Department of Computer Science

Wireless Sensor Networks

• Integrating computing with the

 “physical world”
Sense Process data Consume

– Dynamic data-driven system

• Large-scale self-organized network

 of tiny low-cost nodes with sensors
– Resource constrained nodes:

• CPU: 7 MHz

• Memory: 4KB data, 128KB program

• Bandwidth: 32 kbps

• Power: 2 AA batteries

• Challenge: programming the “network” to
efficiently collect and process data

• Low level details
– Resource constraints

– Conserving battery life for long term unattended operation

– Developing distributed algorithms for self-organization
• Communication and data routing between nodes

• Maintain scalability as the number of nodes in the network grow

• Resilience to dynamic changes (e.g., failures)

• Data processing challenges
– Spatial and temporal correlation of data from several independent

sources

– Processing of disparate measurement information to estimate/analyze
the “actual” physical phenomenon

• Providing a simple & high level interface

 for end-users to program data processing

 algorithms and global system behavior

 without the need to understand

 low-level issues

WSN: DDDAS Challenges

WSN

Macroprogramming WSNS

• The traditional approach to DS programming involves

writing “network-enabled” programs for each node

– The program specifies interactions between modules rather

than the expected system behavior

– This paradigm raises several issues:

• Program development is difficult due to the complexity of indirectly

encoding the system behavior and catering to low-level details

• Program debugging is difficult due to hidden side effects and the

complexity of interactions

• Lack of a formal distributed behavior specification precludes

verification of compliance to “expected” behavioral properties

• Macroprogramming entails programming the

 system wide behavior of the WSN

– Hides low system-level details, e.g., hardware

 interactions, network messaging protocols etc.

Reprogramming?

• Over-the-air reprogramming is a highly

desirable feature for WSN systems

– Deployment costs are high and nodes are often

inaccessible or remotely located

• Reasons to reprogram

– Iterative development cycles

• Change the fidelity or type of measurements

• Update data processing features

– Removal of bugs

• Challenges: (1) Preserving system behavioral

properties, (2) Allowing code reuse and

versioning, (3) Minimizing update costs

Heterogeneous Sensor Networks

• Resource constraints of nodes necessitates

 use of heterogeneous devices in the network

– High data rate sensors, e.g., laser disp. sensor

– CPU/memory intensive processing, e.g., FFT

– Bandwidth bottlenecks and radio range

– Persistent storage

• Heterogeneity can be supported by deploying a

hierarchical network

• The macroprogramming architecture should uniformly

encompass heterogeneous devices

– Supporting platform agnostic application development is trivial

• Challenge: Designing an architectural model that scales

performance as resources increase

Objective

To develop a second generation operating

system suite that facilitates rapid

macroprogramming of efficient

self-organized distributed data-driven

applications for WSN

Outline

• Challenges

• Related work

• Our approach

• Current status

• Future directions

Related Work

• TinyOS
– Low footprint: applications and OS are tightly coupled

– Costly reprogramming: update complete node image

– Aimed at resource constrained nodes

• SOS
– Interacting modules compose an application

– OS and modules are loosely coupled

– Modules can be individually updated: low cost

– Lack of sufficient safety properties

– Aimed at resource constrained nodes

• Maté – application specific virtual machine
– Event driven bytecode modules run over an interpreter

– Domain specific interpreter

– Very low cost updates of modules

– Major revision require costly interpreter updates

– Ease to program using simple scripting language

– Implemented for constrained nodes

• Impala
– Rich routing protocols

– Rich software adaptation subsystem

– Aimed at resource rich nodes

Related Work

• TinyDB
– An application on top of TinyOS

– Specification of data processing behavior using SQL queries

– Limitations in behavioral specifications (due to implementation)

– Difficult to add new features or functionality

– High footprint

• High level macroprogramming languages
– Functional and intermediate programming languages

– Programming interface is restrictive and system mechanisms can not be tuned

– No mature implementations exist

– No performance evaluation is available

Outline

• Challenges

• Related work

• Our approach

• Current status

• Future directions

Application Model

• Macroprogramming (application) centric
OS design: top down approach

• Application model:

– Application is composed of data processing
components called processing elements (PE)

– Application is a specification of data-driven
macro system behavior:
• An annotated connection graph of PEs

• Capability based naming of devices in the
heterogeneous network

• PE deployment map: assignment of tasks to
named devices (sets) in the heterogeneous net.

Processing Elements

• Defines “typed” input/output interfaces
– Implemented as data queues

• Performs a data processing operation on input
data
– Programmed in C

– Transactional behavior
• Reads input processes data writes output commits

output enqueue & input dequeue

• Concurrency safety: independent of underlying system’s
concurrency model

• Conceptually a single unit of execution
– Isolation properties

• Enables independent arch, scaling

– Asynchronous execution

– Code reusability

Average

raw_t

avg_t

avg_t

Connection Graph

• A data-driven macro specification of system behavior

• Connection of instances of data sources (ports), PEs
and services using an annotated graph

• Typed safety: connection interfaces are statically type
checked

• Deterministic system behavior

• A simple example:

raw_t

C(r)

A()

C = Clock

A = Accelerometer

Threshold

(0.5)

raw_t

raw_t K Filter

()

avg_t fil_t
FS

* Average

()
raw_t

avg_t

avg_t
(50)

The Application

• Device naming (addressing) the last piece in the puzzle:
– Devices are identified based on their capability sets

• For example, devices with photo sensors, devices with fast CPU

• Implemented as masks

• Individual node naming does not scale

@ ACCELEROMETER_SENSOR_NODES: threshold

@ FAST_CPU_NODES: average

@ SERVER_NODE: k_filter, FS

TRIGER(CLOCK(1,rate)[0]) ACC_SENSOR(2,)[0]

ACC_SENSOR(2,)[0] threshold(3,0.5)

threshold(3,0.5)[0] –(50) average(4,)[0]

average(4,)[0] k_filter(5,) | –(5) average(4,)[1]

k_filter(5,) FS(1,)

The Application

• Device naming (addressing) the last piece in the puzzle:
– Devices are identified based on their capability sets

• For example, devices with photo sensors, devices with fast CPU

• Implemented as masks

• Individual node naming does not scale

t k FS a

@ ACCELEROMETER_SENSOR_NODES: threshold

@ FAST_CPU_NODES: average

@ SERVER_NODE: k_filter, FS

TRIGER(CLOCK(1,rate)[0]) ACC_SENSOR(2,)[0]

ACC_SENSOR(2,)[0] threshold(3,0.5)

threshold(3,0.5)[0] –(50) average(4,)[0]

average(4,)[0] k_filter(5,) | –(5) average(4,)[1]

k_filter(5,) FS(1,)

The Application

• Device naming (addressing) the last piece in the puzzle:
– Devices are identified based on their capability sets

• For example, devices with photo sensors, devices with fast CPU

• Implemented as masks

• Individual node naming does not scale

t k FS a

@ ACCELEROMETER_SENSOR_NODES: threshold

@ FAST_CPU_NODES: average

@ SERVER_NODE: k_filter, FS

TRIGER(CLOCK(1,rate)[0]) ACC_SENSOR(2,)[0]

ACC_SENSOR(2,)[0] threshold(3,0.5)

threshold(3,0.5)[0] –(50) average(4,)[0]

average(4,)[0] k_filter(5,) | –(5) average(4,)[1]

k_filter(5,) FS(1,)

The Application

• Device naming (addressing) the last piece in the puzzle:
– Devices are identified based on their capability sets

• For example, devices with photo sensors, devices with fast CPU

• Implemented as masks

• Individual node naming does not scale

t k FS a

Application updation?

@ ACCELEROMETER_SENSOR_NODES: threshold

@ FAST_CPU_NODES: average

@ SERVER_NODE: k_filter, FS

TRIGER(CLOCK(1,rate)[0]) ACC_SENSOR(2,)[0]

ACC_SENSOR(2,)[0] threshold(3,0.5)

threshold(3,0.5)[0] –(50) average(4,)[0]

average(4,)[0] k_filter(5,) | –(5) average(4,)[1]

k_filter(5,) FS(1,)

OS Design

• Each node has a static OS kernel
– Consists of platform depend and platform independent

layers

• Each node runs service modules

• Each node runs a subset of the components that
compose a macro-application

Updateable

User space

Static OS

Kernel

Platform Independent Kernel

App PE App PE App PE Services Services

HW Drivers HW Drivers HW Drivers

Hardware Abstraction Layer

Outline

• Challenges

• Related work

• Our approach

• Current status

• Future directions

WSN @ BOWEN

ECN

Net

Interne

t

802.11b

Peer-to-Peer

FM 433MHz

Laser attached

via serial port to

Stargate computers

MICA2 motes with

ADXL 202

Currently laser readings

can be viewed for from

anywhere over the Internet

(conditioned on firewall settings)

Pilot deployment at BOWEN labs

Current Status: OS

• We have completed an initial prototype of

our operating system for AVR μc (Mica2)

• Introductory paper in ICCS 2006

• Current activities

– Exhaustive testing and debugging

– Performance evaluation

– Enhancing generic routing modules

– Enhancing application loading service

– Porting to different platforms (POSIX)

Outline

• Challenges

• Related work

• Our approach

• Current status

• Future directions

Future Directions

• Implement common data processing modules
that can be reused
– E.g., aggregation, filtering, FFT

• Release the OS code

• Complete deployment on a real-world large-
scale heterogeneous test bed: BOWEN labs
– Iteratively develop a DDDAS system for structural

health monitoring

• WYSIWYG application design utility, high level
functional programming abstractions

• Exploring other application domains

• Exploring distributed algorithms:
– E.g. PE allocation, routing, aggregation, etc.

Questions?

Thank you!

