MauveDB: Supporting Model-based User Views in Database Systems

Amol Deshpande, University of Maryland
Samuel Madden, MIT
Motivation

- Unprecedented, and rapidly increasing, instrumentation of our every-day world

Distributed measurement networks (e.g. GPS)

Wireless sensor networks

RFID

Industrial Monitoring
Motivation

● Unprecedented, and rapidly increasing, instrumentation of our every-day world
 ● Overwhelmingly large raw data volumes generated \textit{continuously}
 ● Data must be processed in \textit{real-time}
 ● The applications have strong \textit{acquisitional} aspects
 ● Data may have to be actively acquired from the environment
 ● Typically \textit{imprecise, unreliable and incomplete} data
 ● Inherent measurement noises (e.g. GPS) and low success rates (e.g. RFID)
 ● Communication link or sensor node failures (e.g. wireless sensor networks)
 ● Spatial and temporal biases because of measurement constraints

● \textbf{Traditional data management tools are ill-equipped to handle these challenges}
Example: Wireless Sensor Networks

User

select time, avg(temp) from sensors
epoch 1 hour

\[
\begin{align*}
\{10am, 23.5\} \\
\{11am, 24\} \\
\{12pm, 30\}
\end{align*}
\]

1. Spatially biased deployment
 ➔ these are not true averages

2. High data loss rates
 ➔ averages of different sets of sensors

3. Measurement errors propagated to the user
 ➔ {12pm, 70}

A wireless sensor network deployed to monitor temperature
Example: Wireless Sensor Networks

User

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>

Impedance mismatch
User wants to query the “underlying environment”, and not the sensor readings at selected locations

A wireless sensor network deployed to monitor temperature
Typical Solution

- Process data using a statistical/probabilistic model before operating on it
 - Regression and interpolation models
 - To eliminate spatial or temporal biases, handle missing data, prediction
 - Filtering techniques (*e.g.* Kalman Filters), Bayesian Networks
 - To eliminate measurement noise, to infer hidden variables etc

```
insert into raw-data
...
```

```
Table raw-data

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>...</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>
```

```
select * from raw-data
```

1. Extract all readings into a file
2. Run a statistical model (*e.g.* regression) using MATLAB
3. Write output to a file
4. Write data processing tools to process/aggregate the output

Sensor Network

Database

User

Databases typically only used as a backing store; All data processing done outside
Issues

- Can’t exploit commonalities, reuse/share computation
- No easy way to keep the model outputs up-to-date
- Lack of declarative languages for querying the processed data
- Large amount of duplication of effort
- Non-trivial
 - Expert knowledge & MATLAB familiarity required!
- Prevents real-time analysis of the data in most cases
- Why are databases not doing any of this?
 - We are very good at most of these things
Solution: Model-based User Views

- An abstraction analogous to *traditional database views*
- Provides *independence from the messy measurement details*

A *traditional database view* (defined using an SQL query)

```
User

avg-balances
select zipcode, avg(balance) from accounts
group by zipcode
```

No difference from a user’s perspective

A *model-based database view* (defined using a statistical model)

```
User

temperatures
Use *Regression* to predict missing values and to remove spatial bias
```

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>

```
accounts

<table>
<thead>
<tr>
<th>acct-no</th>
<th>balance</th>
<th>zipcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>a</td>
<td>20001</td>
</tr>
<tr>
<td>102</td>
<td>b</td>
<td>20002</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

raw-temp-data

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>
Supports the abstraction of Model-based User Views
Provides declarative language constructs for creating such views
Supports SQL queries over model-based views
Keeps the models up-to-date as new data is inserted into the database
MauveDB System

- Supports the abstraction of Model-based User Views
- Provides declarative language constructs for creating such views
- Supports SQL queries over model-based views
- Keeps the models up-to-date as new data is inserted into the database
Motivation

Model-based views
  - Details, view creation syntax, querying

Query execution strategies

MauveDB implementation details

Experimental evaluation
Linear Regression

- Models a **dependent variable** as a function of a set of **independent variables**

Model *temperature* as a function of \((x, y)\)

E.g.

\[
temp = w_1 + w_2 \times x + w_3 \times x^2 + w_4 \times y + w_5 \times y^2
\]
A Regression-based View

**Grid Abstraction**

**User**

**Continuous Function**

**User**

**Consistent uniform view**

**User**

**Apply regression; Compute “temp” at grid points**

**raw-temp-data**

**temperatures**

Use Regression to model temperature as:
\[ \text{temp} = w_1 + w_2 x + w_3 x^2 + w_4 y + w_5 y^2 \]

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>
Creating a Regression-based View

CREATE VIEW
RegView(time [0::1], x [0:100:10], y[0:100:10], temp)
AS
FIT temp USING time, x, y
BASES 1, x, x^2, y, y^2
FOR EACH time T
TRAINING DATA
SELECT temp, time, x, y
FROM raw-temp-data
WHERE raw-temp-data.time = T
Somewhat model-specific, but many commonalities

A Interpolation-based View

CREATE VIEW

IntView(t [0::1], sensorid [:1], y[0:100:10], temp)

AS

INTERPOLATE temp USING time, sensorid

FOR EACH sensorid M

TRAINING DATA

SELECT temp, time, sensorid

FROM raw-temp-readings

WHERE raw-temp-readings.sensorid = M
Outline

- Motivation
- Model-based views
  - Details, view creation syntax, querying
- Query execution strategies
- MauveDB implementation details
- Experimental evaluation
Querying a Model-based View

- Analogous to traditional views

So:

- `select * from reg-view`
  - Lists out temperatures at all grid-points

- `select * from reg-view where x = 15 and y = 20`
  - Lists temperature at (15, 20) at all times

- ...
Two operators per view type that support `get_next()` API

- **ScanView**
  - Returns the contents of the view one-by-one
- **IndexView (condition)**
  - Returns tuples that match a condition
    - e.g. return `temperature` where \((x, y) = (10, 20)\)

```sql
select *
from locations l, reg-view r
where \((l.x, l.y) = (r.x, r.y)\)
and r.time = "10am"
```
View Maintenance Strategies

- Option 1: Compute the view as needed from base data
  - For regression view, scan the tuples and compute the weights

- Option 2: Keep the view materialized
  - Sometimes too large to be practical
    - E.g. if the grid is very fine
  - May need to be recomputed with every new tuple insertion
    - E.g. a regression view that fits a single function to the entire data

- Option 3: Lazy materialization/caching
  - Materialize query results as computed

- Generic options shared between all view types
View Maintenance Strategies

- Option 4: Maintain an efficient *intermediate representation*
- Typically model-specific

**Regression-based Views**
- Say $\text{temp} = f(x, y) = w_1 h_1(x, y) + \ldots + w_k h_k(x, y)$
- Maintain the *weights* for $f(x, y)$ and a *sufficient statistic*
  - Two matrices ($O(k^2)$ space) that can be incrementally updated
- ScanView: Execute $f(x, y)$ on all grid points
- IndexView: Execute $f(x, y)$ on the specified point
- InsertTuple: Recompute the coefficients
  - Can be done very efficiently using the sufficient statistic

**Interpolation-based Views**
- Build and maintain a tree over the tuples in the *TRAINING DATA*
Outline

• Motivation
• Model-based views
  • Details, view creation syntax, querying
• Query execution strategies
• MauveDB implementation details
• Experimental evaluation
MauveDB: Implementation Details

- Written in the Apache Derby Java open source database system
- Support for Regression- and Interpolation-based views
- Minimal changes to the main codebase
- Much of the additional code (approx 3500 lines) fairly generic in nature
  - A view manager (for bookkeeping)
  - Query processing operators
  - View maintenance strategies
- Model-specific code
  - Intermediate representation
  - Part of the view creation syntax
MauveDB: Experimental Evaluation

- Intel Lab Dataset
  - 54-node sensor network monitoring temperature, humidity etc
  - Approx 400,000 readings
  - Attributes used
    - Independent - time, sensorid, x-coordinate, y-coordinate
    - Dependent - temperature
Spatial Regression

Contour plot over the data obtained using:

```
select *
from reg-view
where time = 2100
```
Interpolation

Average temperature over raw sensor readings

Over 40% missing data

Average temperature over an interpolation-view over the raw sensor readings
Comparing View Maintenance Options

- 50000 tuples initially
- Mixed workload:
  - insert 1000 records
  - issue 50 point queries
  - issue 10 average queries

- Brief summary:
  - Intermediate representation typically the best
  - Among others, dependent on the view properties, and query workload

![Regression, per time](image1)

![Interpolation, per sensor](image2)
Ongoing and Future Work

- Adding support for views based on *dynamic Bayesian networks* (e.g. *Kalman Filters*)
  - A very general class of models with wide applicability
  - Generate *probabilistic data*
- Developing APIs for adding arbitrary models
  - Minimize the work of the model developer
- Query processing, query optimization, and view maintenance issues
- Much research still needs to be done
Conclusions

- Proposed the abstraction of model-based views
  - Powerful abstraction that enables declarative querying over noisy, imprecise data
- Exploit commonalities to define, to create, and to process queries over such views
- MauveDB prototype implementation
  - Using the Apache Derby open source DBMS
  - Supports Regression- and Interpolation-based views
  - Supports many different view maintenance strategies
Thank you!!

- Questions?