Localization Techniques for Underwater Acoustic Sensor Networks

based on: Localization Techniques for Underwater Acoustic Sensor Networks, M. Erol-Kantarcii, T. Mouftah.

Łukasz Farian

Department of Informatics University of Oslo

Cyber Physical Systems, 28.09.2012

Contents:

1. Motivation:

what is the UASN, applications, challenges and new solutions

2. Distributed Localization Techniques

review of solutions, their pros and cons

3. Centralized Localization Techniques

general review

3. Conclusion

solutions' compromises

4. Discussion

paper criticism

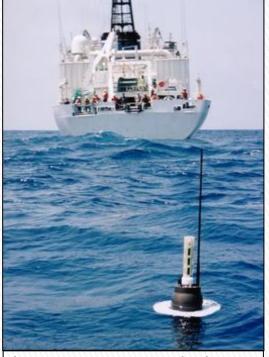
5. Literature

What is the UASN? Current offshore applications Challenges for the UASN

What is the UASN?

<u>Underwater</u> <u>Acoustic</u> <u>Sensor</u> <u>Networks</u>:

Group of sensors and vehicles deployed <u>underwater</u> and <u>networked</u> via <u>acoustic links</u>, performing <u>collaborative</u> tasks.


Łukasz Farian

Localization Techniques in UASN

What is UASN? Current offshore applications Challenges for The UASN

Current offshore applications:

- Environment monitoring,
- oil platform monitoring,
- disaster prevention,
- assisted navigation,
- distributed tactical surveillance,

http://www.argo.ucsd.edu/

Localization Techniques in UASN

What is UASN? Current offshore applications Challenges for UASN

5

Challenges for UASN (1/2)

U Why acoustic signals?

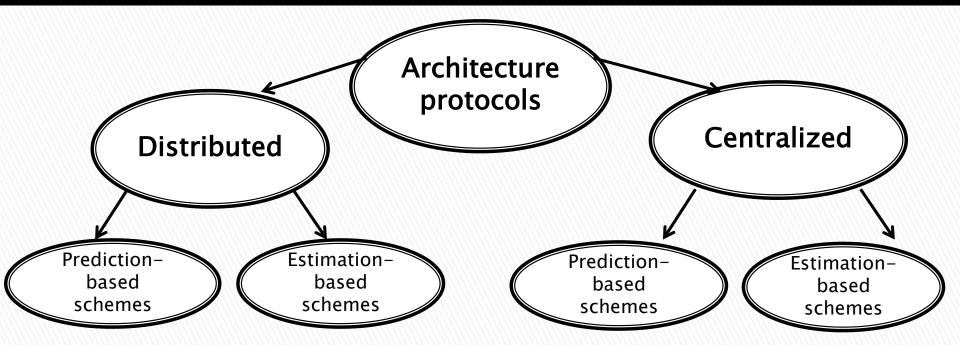
more robust in water than radio or optical signals,

□ Water as medium?

- Iow data rate:
 - 1500 m/s acoustic signal speed in water,
- Iow link quality:
 - multipatch signal propagation,
 - time variability of the medium,

What is UASN? Current offshore applications Challenges for UASN

6


Challenges for UASN (2/2)

Underwater Sensor Network:

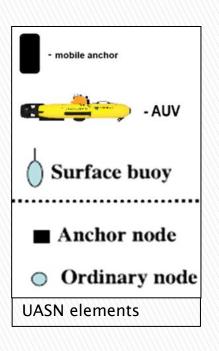
- hardly accessible environment \approx expensive
- human independent,
- energy-limited:
- not all nodes are fixed to position

Current offshore applications Challenges for UASN New solutions proposed

New solutions proposed:

Łukasz Farian

Localization Techniques in UASN


Estimation-based schemes Prediction-based schemes

Necessary definitions:

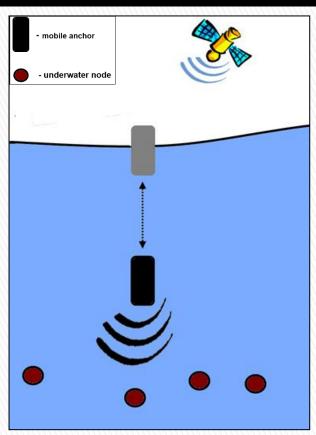
Communication:

- silent,
- iterative,
- active,
- 🖵 ,Beacon" signal
- Time stamped signal
 ToA,

TDoA.

Distributed Localization Techniques:

Dive and Rise Localization


Multi Stage Localization AUV-Aided Localization Localization with Directional Beacons Large Scale Localization Underwater Positioning Scheme Large Scale Localization-Scheme Scalable Localization with Mobility Prediction

Estimation-based schemes Prediction-based schemes

The Dive and Rise Localization (DNRL):

<u>energy efficient</u>
 accurate estimate
 high coverage

expensive non-homogenous slow

	Distributed/ Centralized	Estimation/ Prediction	Anchor type	Ranging method	Communication	Synchronization	
DNRL [3]	Distributed	Estimation	Non-propelled mobile anchors	ToA (one-way ranging)	Silent	Yes	

Localization Techniques in UASN

11

Distributed Localization Techniques:

Dive and Rise Localization Multi Stage Localization

AUV-Aided Localization Localization with Directional Beacons Large Scale Localization Underwater Positioning Scheme Large Scale Localization-Scheme Scalable Localization with Mobility Prediction

Estimation-based schemes Prediction-based schemes

The Multi Stage Localization (MSL):

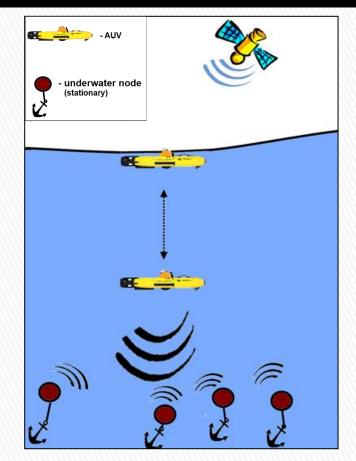
high coverage
more homogenous
faster

error accumulation less energy efficient expensive

		Distributed/ Centralized	Estimation/ Prediction	Anchor type	Ranging method	Communication	Synchronization	
\. \.	MSL [4]	Distributed	Estimation	Non-propelled mobile anchors and reference nodes	ToA (one-way ranging)	Iterative	Yes	

Localization Techniques in UASN

Distributed Localization Techniques:


Dive and Rise Localization Multi Stage Localization AUV-Aided Localization Localization with Directional Beacons Large Scale Localization Underwater Positioning Scheme Large Scale Localization-Scheme Scalable Localization with Mobility Prediction

Estimation-based schemes Prediction-based schemes

The AUV-Aided Localization (AAL):

□ high coverage

error accumulation
 communication overhead
 slow
 low accuracy
 low energy efficient
 expensive

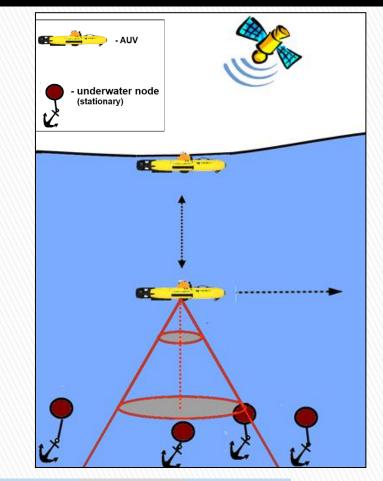
	Distributed/ Centralized	Estimation/ Prediction	Anchor type	Ranging method	Communication	Synchronization	
AAL [5]	Distributed	Estimation	Propelled mobile anchor (AUV)	ToA (two-way ranging)	Silent	No	

Localization Techniques in UASN

15

Distributed Localization Techniques:

Dive and Rise Localization Multi Stage Localization AUV-Aided Localization Localization with Directional Beacons Large Scale Localization Underwater Positioning Scheme Large Scale Localization-Scheme Scalable Localization with Mobility Prediction


Estimation-based schemes Prediction-based schemes

The Localization with Directional Beacons (LDB):

no synchornization
 cost-effective
 range-free
 energy efficient

Iow accuracy slow unrealistic solution

Łukasz Farian

University of Oslo

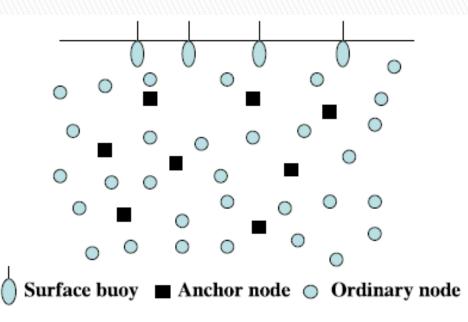
	Distributed/ Centralized	Estimation/ Prediction	Anchor type	Ranging method	Communication	Synchronization	
LDB [6]	Distributed	Estimation	Propelled mobile anchor (AUV)	Range-free	Silent	No	
					De	nartment of	Informatics

Localization Techniques in UASN

Distributed Localization Techniques:

Dive and Rise Localization Multi Stage Localization AUV-Aided Localization Localization with Directional Beacons Large Scale Localization Underwater Positioning Scheme Large Scale Localization-Scheme

Scalable Localization with Mobility Prediction

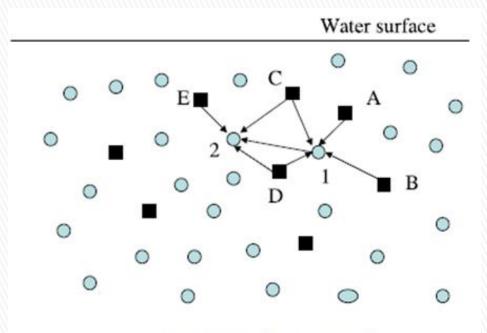

Łukasz Farian

Localization Techniques in UASN

The Large Scale Localization (LSL) (1/2):

- hierarchical localization scheme
- only anchor nodes can communicate with boys
- ordinary nodes can communicate <u>only</u> with anchor nodes
- confidence value estimated

Łukas


		Distributed/ Centralized	Estimation/ Prediction	Anchor type	Ranging method	Communication	Synchronization	
	LSL [7]	Distributed	Estimation	Surface buoys, underwater anchors, and reference nodes	ToA (one-way ranging)	Iterative	Yes	
7	Farian			Localization Technique	s in UASN	D	epartment o	of

Estimation-based schemes Prediction-based schemes

The Large Scale Localization (LSL) (2/2):

Large scale

not energy efficient overhead communication complex solution

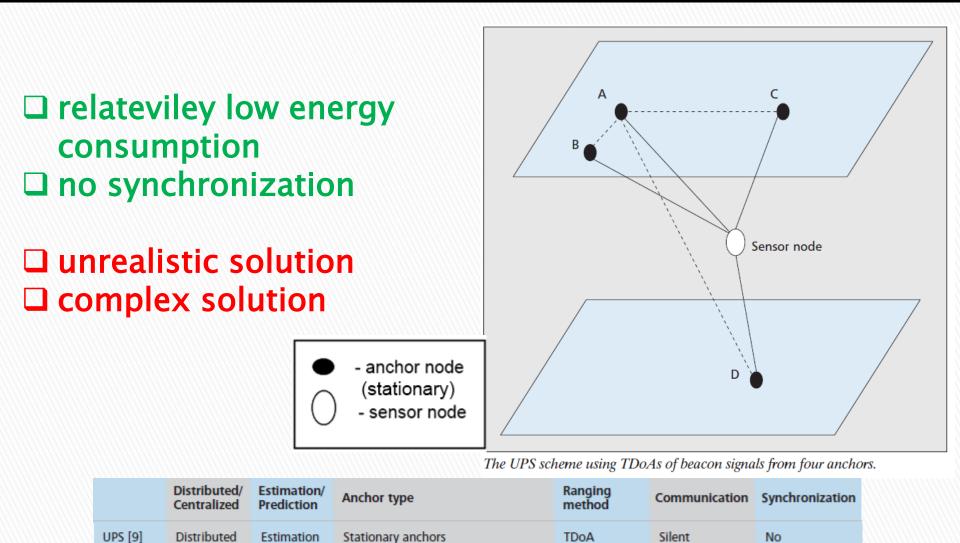
Recursive location estimation

	Distributed/ Centralized	Estimation/ Prediction	Anchor type	Ranging method	Communication	Synchronization
LSL [7]	Distributed	Estimation	Surface buoys, underwater anchors, and reference nodes	ToA (one-way ranging)	Iterative	Yes

Localization Techniques in UASN

Distributed Localization Techniques:

Dive and Rise Localization Multi Stage Localization AUV-Aided Localization Localization with Directional Beacons Large Scale Localization Underwater Positioning Scheme Large Scale Localization-Scheme Scalable Localization with Mobility Prediction


Łukasz Farian

Localization Techniques in UASN

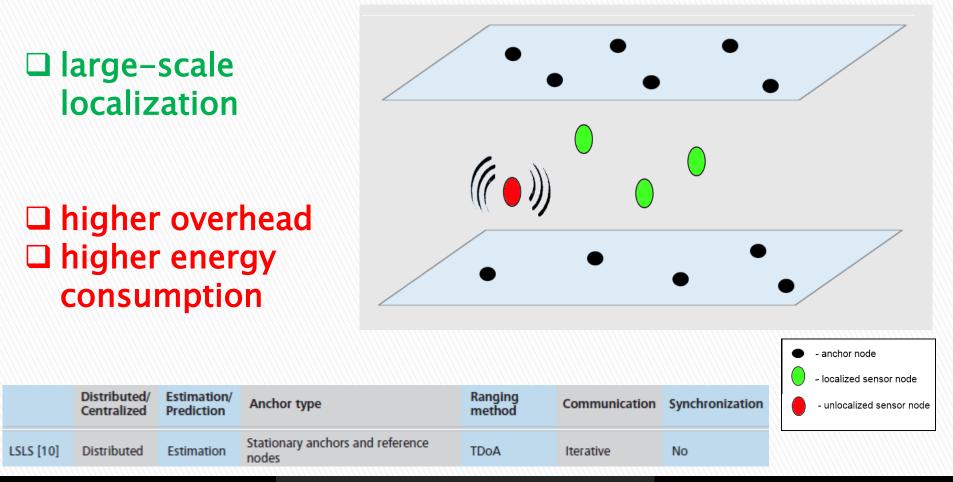
Estimation-based schemes Prediction-based schemes

21

The Underwater Positioning Scheme (UPS):

Łukasz Farian

Localization Techniques in UASN


22

Distributed Localization Techniques:

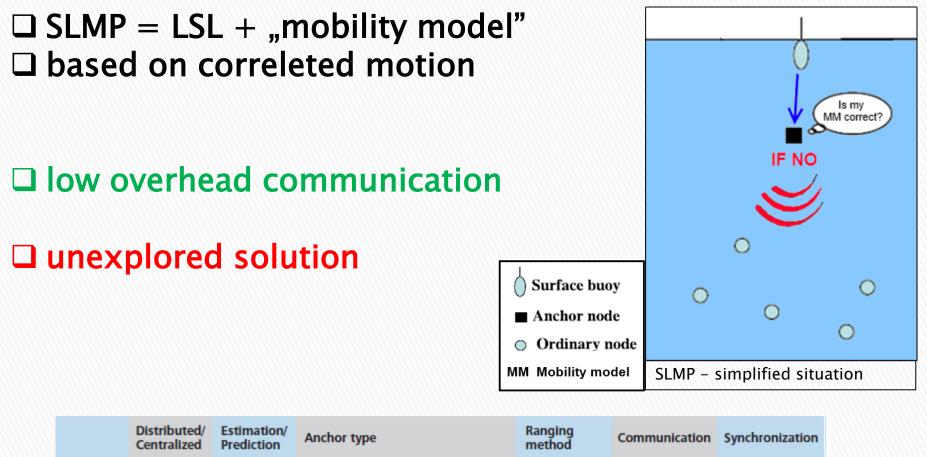
Dive and Rise Localization Multi Stage Localization AUV-Aided Localization Localization with Directional Beacons Large Scale Localization Underwater Positioning Scheme Large Scale Localization-Scheme Scalable Localization with Mobility Prediction

The Large-Scale Localization Scheme (LSLS):

□ LSLS = UPS + complementary phase

Łukasz Farian

Localization Techniques in UASN


24

Distributed Localization Techniques:

Dive and Rise Localization Multi Stage Localization AUV-Aided Localization Localization with Directional Beacons Large Scale Localization Underwater Positioning Scheme Large Scale Localization-Scheme Scalable Localization with Mobility Prediction

25

The Scalable Localization with Mobility Prediction (SLMP):

	Distributed/ Centralized	Estimation/ Prediction	Anchor type	Ranging method	Communication	Synchronization
SLMP [12]	Distributed	Prediction	Surface buoys, underwater anchors, and reference nodes	ToA (one-way ranging)	Iterative	Yes

Łukasz Farian

Localization Techniques in UASN

Centralized Localization Techniques:

Proposed <u>Centralized localization techniques are</u> <u>unsuitable for UASN</u> becasue they do not suport realtime location information,

but... there can be found some specific applications scenarios, e.g.: Colaborative Localization (CL) for research of depths of oceans.

Conclusion

Conclusion (1/2):

Iocalization vs. energy-efficiency: The better localization accuracy -> the worse energy-efficiency The worse localization accuracy -> the better energy-efficiency

one-way ranging vs. two-way ranging: Two-way ranging spends more energy, but one-way ranging requires synchornization.

centralized vs. distributed schemes: centralized schemes are less flexible, but they are computationally light

Conclusion

Conclusion (2/2):

Prediction-based vs. estimation-based schemes: <u>Prediction-based schemes</u> have better performance and lower overhead and are energy-efficient, but they have not been examined properly yet. <u>Estimation-based solution</u> is simplier.

<u>There is no winner and there is no looser –</u> <u>solution suitability depends on a specific</u> <u>application.</u>

Łukasz Farian

Localization Techniques in UASN

Centralized Localization Techniques Conclusion Discussion

Paper criticism:

Localization Techniques for Underwater Acoustic Sensor Networks, M. Erol-Kantarcii, T. Mouftah:

- insufficient basic explenations (even for survey)
- no simple pictures
- not evaluated multipatch signal propagation and time variability problems (even not mentioned)
- illustrative table with fundamental properties of the surveyed techniques

Literature

M. Erol-Kantarcii, T. Mouftah, Localization Techniques for Underwater Acoustic Sensor Networks, *Sema Oktug, Istanbul Technical University*

J. Daladier , Underwater Acoustic Sensor Networks, PowerPoint presentation, Department of Computer Science and Engineering University of South Florida

J. Partan, Practical Issues in Underwater Networks, PowerPoint presentation, University of Massachusetts Amherst

Z. Zhough, Localization for Large-Scale Underwater Sensor Networks, UCONN CSE Technical Report: UbiNet-TR06-04

Z. Zhou, J. Cui, and S. Zhou, "Efficient Localization for Large-Scale Underwater Sensor Networks," *Ad Hoc Net*., vol. 8, no. 3, May 2010, pp. 267–79.

F. Akyildiz, State-of-the-Art in Protocol Research for Underwater Acoustic Sensor Networks, Broadband & Wireless Networking Laboratory School of Electrical & Computer Engineering Georgia Institute of Technology, Atlanta, USA.

Online source: http://www.argo.ucsd.edu/

If pictures have no source specified, they were created by the author of this presentation.