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Introduction Wi
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e Increasingly feasible miniature ad-hoc sensor
network integration.

e Conventional centralized information and
data fusion are unsuited because of amount
of data.

e Distance-based fusion algorithm will select
sensors that give reliable results to
participate.
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e Sensor node: computer, battery, sensors,
transceivers.

e Deployment of sensor nodes outdoors.

e Regions: geographical clusters, each with a
manager node.

e Objective: detect vehicles as they pass

region, identify vehicle type, estimate location
(EBL).
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e CFAR Target
Detection

e Target Classification
e Target Localization

e Target Tracking
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e Maximum Likelihood

P(x|k)~ eXp{_%(x_xk)Tzkl(x_xk)}

e 50-dim spectral feature:
Sampling frequency 4960 Hz

512-point FFT, resolution ~9
Hz

Average first 100 points by g
pairs, describes ~900 Hz

e Signal + noise classification
rate depends on SNR.

e SNR proportional to vehicle- |
node distance_ 5 10 15 20 25 30 35 40 45 5D

Feature Dimension
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e Current system architecture allows localization
prior to classification.

e Accurate localization allows for estimation of
sensor-vehicle distance, estimation of probability
of correct classification based on distance.

e Data fusion: function of marginal results from
each node.

e Some events may be rejected by fusion
algorithm.

e Measurements: classification and acceptance
rates.
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e x(i) is the feature vector for i" sensor, C, is the k™"
vehicle class, we must establish a function

P(xe C, | x(1),...,x(N)) 2 P(xe C, | x)
= f(g(P(xe C, [ x(i))),1<i< N)
e g(z,) is the maximum function:

1 z, >z k#]
g(zk):{ e

e Thisis called Decision Fusion

0 otherwise
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e Multiplicative form: for statistically
iIndependent feature vectors x(i), x(j).
P(xe C, | x)= ﬂp(xe C, | x(i)"
Not realistic for sensor network.

e Additive form: weighted sum of marginal
posterior probabilities

P(xe C, |x)= ng(P(xeC | x(7)))

o If w=1 for all i, S|mple voting.
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e Weighting factor as function of distance and
SNR, determined using CFAR and EBL
information.

e We formulate a Maximum A Posterior (MAP)
Probability Gating Network, using Bayesian
estimation:

P(xe C,)=P(xe C; | x,d,,s,)- P(x|d,,s,)- P(d,,s,)
e Probabilities from experiment data.



Maximum A Posterior
Decision Fusion

e This amounts to assigning

weights: w,=P(x|d.,s,) P(d.,s,)
o Othgr method§: 1 4 <d
Distance gating: W, =3 P
|0 otherwise
Nearest Neighbor: = _ | 1 d <d;,Vj#i
" |0 otherwise

Baseline: simple voting
(w,=1 for all i)
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Results Wit

MMMMMMM

e Closest node gives highest acceptance,
classification rates for accurate localization
estimates

e MAP Fusion has smaller dependence on
localization error than other methods

e Both of these methods can reduce
communication needed for decision
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Further Work Wisch
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e MAP Classifier allows for exclusion of those
samples with low classification rates (i.e. only
samples with w, > 0.5 are allowed).

e This will allow for reduction of communication
bandwidth used for classification fusion.

e This method can be applied to other signal
processing tasks.



