Future Wireless Networks

Ubiquitous Communication Among People and Devices

Next-generation Cellular

Wireless Internet Access
Wireless Multimedia
Sensor Networks

Smart Homes/Spaces
Automated Highways
In-Body Networks

All this and more ...
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@ TA: Nima Soltani, Email: nsoltani@stanford.edu,
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® Class Administrator: Pat Oshiro, poshiro@stanford,
Packard 365, 3-2681.



Design Challenges

® Wireless channels are a difficult and capacity-
limited broadcast communications medium

e Traffic patterns, user locations, and network
conditions are constantly changing

® Applications are heterogeneous with hard
constraints that must be met by the network

® Energy and delay constraints change design
principles across all layers of the protocol stack



Wireless Network Design Issues

® Multiuser Communications

® Multiple and Random Access
® Cellular System Design

e Ad-Hoc Network Design

® Network Layer Issues

® Cross-Layer Design

® Meeting Application Requirements



Multiuser Channels:
Uplink and Downlink
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Uplink and Downlink typically duplexed in time or frequency



Bandwidth Sharing
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Ideal Multiuser Detection
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Why Not Ubiquitous Today? Power and A/D Precision



Random Access

® Dedicated channels wasteful for data
® use statistical multiplexing

® Techniques

® Aloha

® Carrier sensing
e Collision detection or avoidance

® Reservation protocols
e PRMA

® Retransmissions used for corrupted data

® Poor throughput and delay characteristics under
heavy loading

® Hybrid methods



Scarce Wireless Spectrum
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SEectral Reuse

Due to its scarcity, spectrum is reused

In licensed bands and unlicensed bands

Cellular, Wimax Wifi, BT, UWB,...

Reuse introduces interference




Interference: Friend or Foe?

® If treated as noise: Foe

_ P Increases BER
SNR = |
N +® Reduces capacity

® If decodable (MUD): Neither friend nor foe

e If exploited via cooperation and cognition:

Friend (especially in a network setting)



Cellular Systems
Reuse channels to maximize capacity

® 1G: Analog systems, large frequency reuse, large cells, uniform standard

o 2G: Digital systems, less reuse (1 for CDMA), smaller cells, multiple
standards, evolved to support voice and data (IS-54, IS-95, GSM)

e 3G: Digital systems, WCDMA competing with GSM evolution.
e 4G: OFDM/MIMO
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MIMO in Cellular:
Performance Benefits

e Antenna gain = extended battery life,
extended range, and higher throughput

® Diversity gain = improved reliability, more
robust operation of services

® Multiplexing gain = higher data rates

® Interference suppression (IXBF) =
improved quality, reliability, robustness

® Reduced interference to other systems



Rethinking “Cells” in Cellulat

How should cellular

Picocell/ :S‘)/.S‘ZL(?W\Y he dgyz;gﬁed?

P HetNet

Will gains in practice be
big or incrementaly in
capactty or coverage?

e Traditional cellular design “interference-limited”
® MIMO /multiuser detection can remove interference
® Cooperating BSs form a MIMO array: what is a cell?
® Relays change cell shape and boundaries
® Distributed antennas move BS towards cell boundary
® Small cells create a cell within a cell (HetNet)

® Mobile cooperation via relaying, virtual MIMO, analog network
codino.



Ad-Hoc/Mesh Networks
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Cooperation in Ad-Hoc Networks

e Similar to mobile cooperation in cellular:

® Virtual MIMO , generalized relaying, interference
forwarding, and one-shot/iterative conferencing

® Many theoretical and practice issues:
® Overhead, half-duplex, grouping, dynamics, synch, ...



Capacity Gain with Virtual MIMO (2x2)

Average Rates vs. Distance, SNR = 0.0 dB
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e TX cooperation needs high-capacity wired or wireless
cooperative link to approach broadcast channel bound

e Gains on order of 2x in theory, what about in practice?

e How many nodes should cooperate, and with whom?



Generalized Relaying
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e Can forward message and/or interference
® Relay can forward all or part of the messages

® Much room for innovation

® Relay can forward interference
® To help subtract it out



Beneficial to forward both
interference and message
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In fact, it can achieve capacity

Analog network coding and the MAC cut-set bound
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Intelligence beyond Cooperation:
Cognition

e Cognitive radios can support new wireless users in
existing crowded spectrum

® Without degrading performance of existing users

e Utilize advanced communication and signal
processing techniques

® Coupled with novel spectrum allocation policies

® Technology could
® Revolutionize the way spectrum is allocated worldwide

® Provide sufficient bandwidth to support higher quality
and higher data rate products and setvices



Cognitive Radio Paradigms

e Underlay

® Cognitive radios constrained to cause minimal
intetference to noncognitive radios

® Interweave

® Cognitive radios find and exploit spectral holes
to avoid interfering with noncognitive radios

® Overlay

® Cognitive radios overhear and enhance

noncognitive radio transmissions Knowledge
an

Complexity



Underlay Systems

® Cognitive radios determine the interference their
transmission causes to noncognitive nodes

® Transmit if interference below a given threshold

® The interference constraint may be met

® Via wideband signalling to maintain interference
below the noise floor (spread spectrum or UWB)

® Via multiple antennas and beamforming



Interweave Systems

® Measurements indicate that even crowded spectrum
is not used across all time, space, and frequencies

® Original motivation for “cognitive” radios (Mitola’00)
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® These holes can be used for communication

® Interweave CRs periodically monitor spectrum for holes
® Hole location must be agreed upon between TX and RX

® Hole is then used for opportunistic communication with
minimal interference to noncognitive users



Overlay Systems

® Cognitive user has knowledge of other
user’s message and/or encoding strategy

® Used to help noncognitive transmission

® Used to presubtract noncognitive interference




from Cognitive Encoding

Performance Gains
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Cellular Systems with Cognitive Relays

Cognltlve Relay 1

data E

Source
Cognitive Relay 2

e Enhance robustness and capacity via cognitive relays

® Cognitive relays overhear the source messages

® Cognitive relays then cooperate with the transmitter in the transmission of the
source messages

® Can relay the message even if transmitter fails due to congestion, etc.

Can extend these ideas to MIMO systems



Wireless Sensor and “Green’ Networks

Smart homes/buildings
Smart structures

Search and rescue
Homeland security
Event detection
Battlefield surveillance
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reeWa
at observatory Long-distance radio modem
A radio link (4km)

"= Energy (transmit and processing) is driving constraint

= Data flows to centralized location (joint compression)
= Low per-node rates but tens to thousands of nodes
= Intelligence is in the network rather than in the devices

= Similar ideas can be used to re-architect systems and networks to be green



Energy-Constrained Nodes

® Each node can only send a finite number of bits.
® Transmit energy minimized by maximizing bit time
® Circuit energy consumption increases with bit time
® Introduces a delay versus energy tradeoff for each bit

e Short-range networks must consider transmit,
circuit, and processing energy.

® Sophisticated techniques not necessarily energy-efficient.
® Sleep modes save energy but complicate networking.

® Changes everything about the network design:
® Bit allocation must be optimized across all protocols.
® Delay vs. throughput vs. node/network lifetime tradeoffs.
® Optimization of node cooperation.



Cooperative Compression in
Sensor Networks
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® Source data correlated in space and time

® Nodes should cooperate in compression as well as
communication and routing

® Joint source/channel/network coding

® What is optimal for cooperative communication:
e Virtual MIMO or relaying?



Green” Cellular Networks

How should cellular

systems be redesigned
Jor minimum energy?

Pico/Femto

Research indicates that
signicant savings is possible

e Minimize energy at both the mobile and base station via

® New Infrastuctures: cell size, BS placement, DAS, Picos, relays
® New Protocols: Cell Zooming, Coop MIMO, RRM,
Scheduling, Sleeping, Relaying

® Low-Power (Green) Radios: Radio Architectures, Modulation,
coding, MIMO



Crosslayer Design in
Wireless Networks

® Application
® Network

® Access
e Link

® Hardware

Tradeoffs at all Iayers of the protocol stack are
optimized with respect to end-to-end performance

This performance is dictated by the application




Key Application: Smart Grids

Consumer Devices Energy Users
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The Smart Grid Design Challenge

® Design a unified communications and control

system ovetlay

® On top of the existing/emerging power

infrastructure

® To provide the right information

® To the right entity (e-g:
transmission and dlstnbutlon t
providers;cias 3L

® At the righsttitiedel
® To take the right actig

ems, ener
Commun At10NS
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Possible Dichotomy for Smart Grid
Design

impersonation, cyber-physical security, ...

Security layer

|

Economics and
Market layer

!

Pricing, incentives, markets, ...

Control and Real-time/embedded control, demand-response,
Optimization layer resource allocation, fault tolerance, ...
Network , ,
Layer Sensor networks, HAN, Wif1, Wimax, Cellular, ...
Sensing Layer Electric, gas, and water sensors, HVAC, ...

|

Physical Layer




Automated Highways

Automated Vehicles
- Cars/planes/UAVs
- Insect flyers

Interdisciplinary design approach

* Control requires fast, accurate, and reliable feedback.
* Wireless networks introduce delay and loss

* Need reliable networks and robust controllers

* Mostly open problems : Many design challenges
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Wireless and Health, Biomedicine
and Neuroscience
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